Skip to main content
Log in

Effect of CO2-induced side reactions on the deposition in the non-aqueous Li-air batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper presents a non-aqueous Li-air battery model that considers the side reactions of lithium carbonate (Li2CO3) formation from both electrolyte decomposition and carbon dioxide (CO2) in the ambient air. The deposition and decomposition behaviors of discharge products, the voltage, and capacity evolutions during the cycling operation of the Li-air batteries are investigated. The deposition behavior analysis implies that the Li2CO3 generated by electrolyte decomposition is mainly distributed near the separator side, while it is dominantly generated by Li-O2/CO2 reaction near the air side. The formation of Li2CO3 by side reactions makes the Li-air batteries exhibit a peak discharge deposition inside the cathode. Moreover, Li2CO3 is difficult to decompose and gradually accumulates with cycles, especially near the air side. The severe accumulation of Li2CO3 near the air side significantly reduces the O2 diffusion into the electrode, which induces severe cycling performance decay of the Li-air batteries. According to the distribution and evolution of the deposition, three simple hierarchical cathode structures with high porosities near the air side are finally studied. The simulation results indicate that the increase of the local porosity near the air side substantially improves the cycling performance of the Li-air batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a :

Specific surface area (m2 m−3)

c :

Concentration (mol m−3)

D :

Diffusion coefficient (m2 s−1)

E 0 :

Reaction equilibrium potential (V)

E :

Potential (V)

F :

Faraday’s constant (96,485.34 C mol−1)

i :

Current density (A m−2)

I :

Applied current density (A m−2)

j :

Local transfer current density (A m−2)

k :

Rate constant

L :

Length (m)

m :

Mass (kg)

M :

Molecular weight (g mol−1)

n :

Number of electrons transferred in the electrode reaction

N :

Molar flux

R :

Universal gas constant (8.314 J mol−1 K−1)

R film :

Electrical resistivity across the Li2O2 or Li2CO3 film (Ω m2)

s :

Stoichiometric coefficient

T :

Temperature (K)

t + :

Transference number of cation in electrolyte

z :

Valence of charge number

V :

Volume (m3)

β :

Symmetry factor

\(\varepsilon\) :

Porosity or volume fraction

δ :

Thickness of deposition film

\(\eta\) :

Overpotential (V)

\(\kappa\) :

Ionic conductivity (S m−1)

ρ :

Density (kg m−3)

\(\sigma\) :

Electrical conductivity (S m−1)

ϕ :

Potential (V)

0:

Equilibrium or initial value

i :

Species

a :

Anodic

c :

Cathodic

eff :

Effective value

l :

Liquid phase

s :

Solid phase; solid product; separator

References

  1. Ogasawara T, Bart AD, Holzapfel M, Nova PK, Bruce PG (2006) Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc 128(4):1390–1393

  2. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2015) Lithium-air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203

    Article  CAS  Google Scholar 

  3. Jung HG, Hassoun J, Park JB, Sun Y-K, Scrosati B (2012) An improved high-performance lithium-air battery. Nat Chem 4(7):579–585

    Article  CAS  PubMed  Google Scholar 

  4. Christensen J, Albertus P, Sanchez-Carrera RS, Loh,amm T, Kozinsky B, Liedtke R,  Ahmed J, Kojic A (2012) A critical review of Li/air batteries. J Electrochem Soc 159(2):R1-R30

  5. Imanishi N, Yamamoto O (2019) Perspectives and challenges of rechargeable lithium-air batteries. Mater Today Adv 4:100031

  6. Read J (2002) Characterization of the lithium/oxygen organic electrolyte battery. J Electrochem Soc 149(9):A1190

    Article  CAS  Google Scholar 

  7. Lu YC, Shao-Horn Y (2013) Probing the reaction kinetics of the charge reactions of non-aqueous Li-O2 batteries. J Phys Chem Lett 4(1):93–99

    Article  CAS  PubMed  Google Scholar 

  8. Bhatt MD, Geaney H, Nolan M, O’Dwyer C (2014) Key scientific challenges in current rechargeable non-aqueous Li-O2 batteries: experiment and theory. Phys Chem Chem Phys 16(24):12093

    Article  CAS  PubMed  Google Scholar 

  9. Yuan J, Yu J (2015) B. Sund n, Review on mechanisms and continuum models of multi-phase transport phenomena in porous structures of non-aqueous Li-air batteries. J Power Sour 278, 352–369

  10. Qiao Y, Yi J, Guo S, Sun Y, Wu S, Liu X, Yang S, He P, Zhou H (2018) Li2CO3-free Li-O2/CO2 battery with peroxide discharge product. Energy Environ Sci 11(5):1211–1217

    Article  CAS  Google Scholar 

  11. Zhang RH, Zhao TS, Jiang HR, Wu MC, Zheng L (2019) V2O5-NiO composite nanowires: a novel and highly efficient carbon-free electrode for non-aqueous Li-air batteries operated in ambient air. J Power Sources 409:76–85

    Article  CAS  Google Scholar 

  12. Shu CZ, Wang JZ, Long JP, Liu H-K, Dou S-X (2019) Understanding the reaction chemistry during charging in aprotic lithium-oxygen batteries: existing problems and solutions. Advance Material 31:1804587

    Article  CAS  Google Scholar 

  13. Jung J-W, Cho S-H, Nam JS, Kim I-D (2020) Current and future cathode materials for non-aqueous Li-air (O2) battery technology – a focused review. Energy Storage Materials 24:512–528

    Article  Google Scholar 

  14. Kwak W-J, Rosy D, Sharon C, Xia H, Kim LR, Johnson PG, Bruce LF, Nazar Y-K, Sun A,  Frimer A, Noked M, Freunberger SA, Aurbach D (2020) Lithium-oxygen batteries and related systems: potential, status, and future. Chem Rev

  15. Chen ZF, Lin XD, Xia H, Hong Y, Liu X, Cai S, Duan J-N, Yang J, Zhou Z, Chang J-K, Zheng M, Dong Q (2019) A functionalized membrane for lithium-oxygen batteries to suppress the shuttle effect of redox mediators. Journal of Materials Chemistry A 7:14260–14270

    Article  CAS  Google Scholar 

  16. Freunberger SA, Chen Y, Drewett NE, Hardwick LJ, Bardé F, Bruce PG (2011) The lithium-oxygen battery with ether-based electrolytes. Angew Chem Int Ed 20(37):8609–8613

    Article  CAS  Google Scholar 

  17. Cecchetto L, Salomon M, Scrosati B, Croce F (2012) Study of a Li-air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid. J Power Sources 213:233–238

    Article  CAS  Google Scholar 

  18. Burke CM, Pande V, Khetan A, Viswanathan V, McCloskey BD (2015) Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase non-aqueous Li-O2 battery capacity. Proceeding of the National Academy of Sciences 112(30):9293–9298

    Article  CAS  Google Scholar 

  19. Lin H, Chen Z, Wang D, Wang M, Peng Z, Liu Z, He H, Wang M, Li H (2021) High-performance Li-air battery after limiting inter-electrode crosstalk. Energy Storage Materials 39:225–231

    Article  Google Scholar 

  20. Li F, Zhu M, Luo Z, Guo L, Bian Z, Li Y, Luo K (2019) Nitrogen-doped graphene derived from polyaniline/graphene oxide composites with improved capacity and cyclic performance of Li-O2 battery. J Solid State Electrochem 23:2391–2399

    Article  CAS  Google Scholar 

  21. Costa JM, Neto AFDA (2019) Zn-Co electrocatalysts in lithium-O2 batteries: temperature and rotating cathode effects on the electrodeposition. J Solid State Electrochem 23:2533–2540

    Article  CAS  Google Scholar 

  22. Radzir NNM, Hanifah SA, Ahmad A, Hassan NH, Bella F (2015) Effect of lithium bis(trifluoromethylsulfonyl)imide salt-doped UV-cured glycidyl methacrylate. J Solid State Electrochem 19:3079–3085

    Article  CAS  Google Scholar 

  23. Piana G, Bella F, Geobaldo F, Meligrana G, Gerbaldi C (2019) PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation. J Energy Storage 26:100947

  24. Falco M, Simari C, Ferrara C, Nair JR, Meligrana G, Bella F, Nicotera I, Mustarelli P, Winter M, Gerbaldi C (2019) Understanding the effect of UV-induced cross-linking on the physicochemical properties of highly performing PEO/LiTFSI-based polymer electrolytes. Langmuir 35:8210–8219

    CAS  PubMed  Google Scholar 

  25. Amici J, Torchio C, Versaci D, Dessantis D, Marchisio A, Caldera F, Bella F, Francia C, Bodoardo S (2021) Nanosponge-based composite gel polymer electrolyte for safer Li-O2 batteries. Polymers 13:1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fu Y, Lei X, Yin H, Liu X (2021) Rational reconfiguration of a gradient redox mediator with in-situ fabricated gel electrolyte for Li-air batteries. Chem Eng J 416:129016

  27. Gao X, Chen Y, Johnson LR, Jovanov ZP, Bruce PG (2017) A rechargeable lithium-oxygen battery with dual mediators stabilizing the carbon cathode. Nat Energy 2(9):17118

    Article  CAS  Google Scholar 

  28. Cheng H, Scott K (2010) Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries. J Power Sources 195(5):1370–1374

    Article  CAS  Google Scholar 

  29. Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novák P, Bruce PG (2011) Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133(20):8040–8047

    Article  CAS  PubMed  Google Scholar 

  30. Xiao J, Hu J, Wang D, Hu D, Xu W, Graff GL, Nie Z, Liu J, Zhang J-G (2011) Investigation of the rechargeability of Li-O2 batteries in non-aqueous electrolyte. J Power Sources 196:5674–5678

    Article  CAS  Google Scholar 

  31. Xu W, Hu J, Engelhard MH, Towne SA, Hardy JS, Xiao J, Feng J, Hu MY, Zhang J, Ding F, Gross ME, Zhang JG (2012) The stability of organic solvents and carbon electrode in nonaqueous Li-O2 batteries. J Power Sources 215:240–247

    Article  CAS  Google Scholar 

  32. Kim BG, Lee J-N, Lee DJ, Park J-K, Choi JW (2013) Robust cycling of Li-O2 batteries through the synergistic effect of blended electrolytes. Chemsuschem 6(3):443–448

    Article  CAS  PubMed  Google Scholar 

  33. Lu Y-C, Gasteiger HA, Crumlin E, McGuire R Jr, Shao-Horn Y (2010) Electrocatalytic activity studies of select metal surfaces and implications in Li-Air batteries. J Electrochem Soc 157(9):A1016–A1025

    Article  CAS  Google Scholar 

  34. Xu W, Hu J, Engelhard MH, Towne SA, Hardy JS, Xiao J, Feng J, Hu MY, Zhang J, Ding F, Gross ME, Zhang J-G (2012) The stability of organic solvents and carbon electrode in non-aqueous Li-O2 batteries. J Power Sources 215:240–247

    Article  CAS  Google Scholar 

  35. Chamaani A, Safa M, Chawla N, Herndon M, EI-Zahab B (2018) Stabilizing effect of ion complex formation in lithium-oxygen battery electrolytes. J Electroanalytic Chem 815:143–150

  36. Li BJ, Liu YJ, Zhang XY, He P, Zhou H (2019) Hybrid polymer electrolyte for Li-O2 batteries. Green Energy & Environment 4:3–19

    Article  Google Scholar 

  37. Laoire CO, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2011) Rechargeable lithium/TEGDME-LiPF6/O2 battery. J Electrochem Soc 158(3):A302–A308

    Article  CAS  Google Scholar 

  38. Freunberger SA, Chen Y, Drewett NE, Hardwick LJ, Barde F, Bruce PG (2011) The lithium-oxygen battery with ether-based electrolytes. Angewandte Chemie-International Edition 50(37):8609–8613

    Article  CAS  PubMed  Google Scholar 

  39. McCloskey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V, HummelshØj JS, NØrskov JK, Luntz AC (2012) Twin problems of interfacial carbonate formation in no aqueous Li-O2 batteries. J Phys Chem Lett 3(8):997–1001

  40. Yang SX, He P, Zhou HS (2016) Exploring the electrochemical reaction mechanism of carbonate oxidation in Li-Air/CO2 battery through tracing missing oxygen. Energy Environ Sci 9(5):1650–1654

    Article  CAS  Google Scholar 

  41. Kwon HJ, Lee HC, Ko J, Jung IS, Lee HC, Lee H, Kim M, Lee DJ, Kim H, Kim TY, Im D (2017) Effects of oxygen partial pressure on Li-air battery performance. J Power Sources 364:280–287

    Article  CAS  Google Scholar 

  42. Sahapatsombut U, Cheng H, Scott K (2013) Modelling of electrolyte degradation and cycling behavior in a lithium-air battery. J Power Sources 243:409–418

    Article  CAS  Google Scholar 

  43. Wadhawan JD, Welford PJ, Maisonhaute E, Climent V, Lawrence NS, Compton RG, McPeak HB, Hahn CEW (2001) Microelectrode studies of the reaction of superoxide with carbon dioxide in dimethyl sulfoxide. J Phys Chem B 105(43):10659–10668

    Article  CAS  Google Scholar 

  44. Wadhawan JD, Welford PJ, McPeak HB, Hahn CEW, Compton RG (2003) The simultaneous voltammetric determination and detection of oxygen and carbon dioxide: a study of the kinetics of the reaction between superoxide and carbon dioxide in non-aqueous media using membrane-free fold disc microelectrodes. Sens Actuators, B Chem 88:40–52

    Article  CAS  Google Scholar 

  45. Takechi K, Shiga T, Asaoka T (2011) A Li-O2/CO2 battery. Chem Commun 47:3463–3465

    Article  CAS  Google Scholar 

  46. Gowda SR, Brunet A, Wallraff GM, McCloskey BD (2013) Implications of CO2 contamination in rechargeable nonaqueous Li-O2 batteries. J Phys Chem Lett 4:276–279

    Article  CAS  PubMed  Google Scholar 

  47. Ling C, Zhang R, Takechi K, Mizuno F (2014) Intrinsic barrier to electrochemically decompose Li2CO3 and LiOH. J Phys Chem C 118(46):26591–26598

    Article  CAS  Google Scholar 

  48. Albertus P, Girishkumar G, McCloskey B, Sánchez-Carrera RS, Kozinsky B, Christensen J, Luntz AC (2011) Identifying capacity limitations in the Li/oxygen battery using experiments and modeling 158(3):A343–A351

    CAS  Google Scholar 

  49. Bruggeman D (1935) Dielectric constant and conductivity of mixtures of isotropic materials. Ann Phys (Leipzig) 24:636–679

    Article  CAS  Google Scholar 

  50. Zhang X, Guo L, Gan L, Zhang Y, Wang J, Johnson LR, Bruce PG, Peng Z (2017) LiO2: cryosynthesis and chemical/electrochemical reactivities. J Phys Chem Lett 8:2334–2338

    Article  CAS  PubMed  Google Scholar 

  51. Freunberger SA, Chen Y, Drewett NE, Hardwick LJ, Bardé F, Bruce PG (2011) The lithium-oxygen battery with ether-based electrolytes. Angew Chem Int Ed 50(37):8609–8613

    Article  CAS  Google Scholar 

  52. Yin W, Grimaud A, Lepoivre F, Yang CZ, Tarascon JM (2016) Chemical vs electrochemical formation of Li2CO3 as a discharge product in Li-O2/CO2 batteries by controlling the superoxide intermediate. J Phys Chem Lett 8(1):214–222 48.

  53. Lim HK, Lim HD, Park KY, Seo DH, Gwon H, Hong J, Goddard WA, ǀǀǀ Kim H, Kang K (2013) Toward a lithium-‘air’ battery: the effect of CO2 on the chemistry of a lithium-oxygen cell. J Am Chem Soc 135(26):9733–9742

  54. Gerbig O, Merkle R, Maier J (2013) Electron and ion transport in Li2O2. Advanced Material 25:3129–3133

    Article  CAS  Google Scholar 

  55. Wang Y (2012) Modeling discharge deposit formation and its effect on lithium-air battery performance. Electrochim Acta 75:239–246

    Article  CAS  Google Scholar 

  56. Sahapatsombut U, Cheng H, Scott K (2013) Modelling the micro-macro homogeneous cycling behavior of a lithium-air battery. J Power Sources 227:243–253

    Article  CAS  Google Scholar 

  57. Jung CY, Zhao TS, An L (2015) Modeling of lithium-oxygen batteries with the discharge product treated as a discontinuous deposit layer. J Power Sources 273:440–447

    Article  CAS  Google Scholar 

  58. Laoire CO, Mukerjee S, Abraham KM (2010) Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J Phys Chem C 114(19):9178–9186

    Article  CAS  Google Scholar 

  59. Xiao X, Shang W, Yu W, Ma Y, Tan P, Chen B, Kong W, Xu H, Ni M (2019) Toward the rational design of cathode and electrolyte materials for aprotic Li-CO2 batteries: a numerical investigation, Intern J Energy Res 1–12

  60. Wang Y, Cho SC (2013) Analysis of air cathode performance for lithium-air batteries. J Electrochem Soc 160(10):A1847–A1855

    Article  CAS  Google Scholar 

  61. Zhang SS, Xu K, Read J (2011) A non-aqueous electrolyte for the operation of Li/air battery in ambient environment. J Power Sources 196(8):3906–3910

    Article  CAS  Google Scholar 

  62. Sahapatsombut U, Cheng H, Scott K (2014) Modelling of operation of a lithium-air battery with ambient air and oxygen-selective membrane. J Power Sources 249:418–430

    Article  CAS  Google Scholar 

  63. Bardenhagen I, Fenske M, Fenske D, Wittstock A, Bäumer M (2015) Distribution of discharge products inside of the lithium/oxygen battery cathode. J Power Sources 299:162–169

    Article  CAS  Google Scholar 

  64. Kim DY, Kim M, Kim DW, Suk J, Park JJ, Park OO, Kang Y (2016) Graphene paper with controlled pore structure for high-performance cathodes in Li-O2 batteries. Carbon 100:265–272

    Article  CAS  Google Scholar 

  65. Kunanusont N, Shimoyama Y (2020) Porous carbon cathode assisted with ionogel binder fabricated from supercritical fluid technique toward Li-O2/CO2 battery application. Applied Energy Materials 3:4421–4431

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Hao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hao, L. & Bai, M. Effect of CO2-induced side reactions on the deposition in the non-aqueous Li-air batteries. J Solid State Electrochem 25, 2571–2585 (2021). https://doi.org/10.1007/s10008-021-05041-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05041-6

Keywords

Navigation