Skip to main content
Log in

Electrochemically assisted fabrication of size-exclusion films of organically modified silica and application to the voltammetry of phospholipids

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Modification of electrodes with nanometer-scale organically modified silica films with pore diameters controlled at 10- and 50-nm is described. An oxidation catalyst, mixed-valence ruthenium oxide with cyano cross-links or gold nanoparticles protected by dirhodium-substituted phosphomolybdate (AuNP-Rh2PMo11), was immobilized in the pores. These systems comprise size-exclusion films at which the biological compounds, phosphatidylcholine and cardiolipin, were electrocatalytically oxidized without interference from surface-active concomitants such as bovine serum albumin. Ten-nanometer pores were obtained by adding generation-4 poly(amidoamine) dendrimer, G4-PAMAM, to a (CH3)3SiOCH3 sol. Fifty-nanometer pores were obtained by modifying a glassy carbon electrode (GC) with a sub-monolayer film of aminopropyltriethoxylsilane, attaching 50-nm diameter poly(styrene sulfonate), PSS, spheres to the protonated amine, transferring this electrode to a (CH3)3SiOCH3 sol, and electrochemically generating hydronium at uncoated GC sites, which catalyzed ormosil growth around the PSS. Voltammetry of Fe(CN)6 3− and Ru(NH3)6 3+ demonstrated the absence of residual charge after removal of the templating agents. With the 50-nm system, the pore structure was sufficiently defined to use layer-by-layer electrostatic assembly of AuNP-Rh2PMo11 therein. Flow injection amperometry of phosphatidylcholine and cardiolipin demonstrated analytical utility of these electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Collinson MM (2002) TrAC 21:121–138

    Google Scholar 

  2. Walcarius A, Mandler D, Cox JA, Collinson MM, Lev O (2005) J Mater Chem 15:3663–3689

    Article  CAS  Google Scholar 

  3. Collinson MM (2007) Acc Chem Res 40:777–783

    Article  CAS  Google Scholar 

  4. Walcarius A, Kuhn A (2008) TrAC 27:593–603

    CAS  Google Scholar 

  5. Cox JA (2011) J Solid State Electrochem 15:1495–1507

    Article  CAS  Google Scholar 

  6. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, New York

    Google Scholar 

  7. Shacham R, Avnir D, Mandler D (1999) Adv Mater 11:384–388

    Article  CAS  Google Scholar 

  8. Shacham R, Avnir D, Mandler D (2004) J Sol–Gel Part Sci Technol 31:329–334

    Article  CAS  Google Scholar 

  9. Shacham, Mandler D, Avnir D (2004) Chem Eur J 10:1936–1943

    Article  CAS  Google Scholar 

  10. Deepa PN, Kanungo M, Claycomb G, Sherwood PMA, Collinson MM (2003) Anal Chem 75:5399–5405

    Article  CAS  Google Scholar 

  11. Makote R, Collinson MM (1998) J Chem Soc Chem Commun: 425–426

  12. Makote R, Collinson MM (1998) Chem Mater 10:2440–2445

    Article  CAS  Google Scholar 

  13. Tanev PT, Pinnavaia TJ (1995) Science 267:865–867

    Article  CAS  Google Scholar 

  14. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McMullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834–10843

    Article  CAS  Google Scholar 

  15. Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Science 269:1242–1244

    Article  Google Scholar 

  16. Holmstrom SD, Karwowska B, Cox JA, Kulesza PJ (1998) J Electroanal Chem 456:239–243

    Article  CAS  Google Scholar 

  17. Walcarius A, Sibottier E, Etienne M, Ghanbaja J (2007) Nature Mater 6:602–608

    Article  CAS  Google Scholar 

  18. Etienne M, Walcarius A (2005) Electrochem Commun 7:1449–1456

    Article  CAS  Google Scholar 

  19. Goux A, Etienne M, Aubert E, Lecomte C, Ghanbaja J, Walcarius A (2009) Chem Mater 21:731–741

    Article  CAS  Google Scholar 

  20. Wandstrat MM, Spendel WU, Pacey GE, Cox JA (2007) Electroanalysis 19:139–143

    Article  CAS  Google Scholar 

  21. Berrettoni M, Giorgetti M, Cox JA, Ranganathan D, Conti P, Zamponi S (2012) J Solid State Electrochem 16:2861–2866

    Article  CAS  Google Scholar 

  22. Ohira A, Ishizaki T, Sakata M, Taniguchi I, Hirayama C, Kunitake M (2000) Colloids Surf A 169:27–33

    Article  CAS  Google Scholar 

  23. Cox JA, Wiaderek KM, Mehdi BL, Gudorf BP, Ranganathan D, Zamponi S, Berrettoni M (2011) J Solid State Electrochem 15:2409–2417

    Article  CAS  Google Scholar 

  24. Ranganathan D, Zamponi S, Berrettoni M, Mehdi BL, Cox JA (2010) Talanta 82:1149–1155

    Article  CAS  Google Scholar 

  25. Hierlemann A, Campbell JK, Baker LA, Crooks RM, Ricco AJ (1998) J Am Chem Soc 120:5323–5324

    Article  CAS  Google Scholar 

  26. Kanungo M, Collinson MM (2004) J Chem Soc Chem Commun: 548–549

  27. Kanungo M, Deepa PN, Collinson MM (2004) Chem Mater 16:5535–5541

    Article  CAS  Google Scholar 

  28. Lu Z-X, Namboodiri A, Collinson MM (2008) ACS Nano 2:993–999

    Article  CAS  Google Scholar 

  29. Etienne M, Sallard S, Schröder M, Guillemin Y, Mascotto S, Smarsly BM, Walcarius A (2010) Chem Mater 22:3426–3432

    Article  CAS  Google Scholar 

  30. Zhao B, Collinson MM (2010) Chem Mater 22:4312–4319

    Article  CAS  Google Scholar 

  31. Decher G (1997) Science 277:1232–1237

    Article  CAS  Google Scholar 

  32. Rusling JF (2004) Biosens Bioelectron 20:1022–1028

    Article  CAS  Google Scholar 

  33. Zhao W, Xu J-J, Chen H-Y (2006) Electroanalysis 18:1737–1748

    Article  CAS  Google Scholar 

  34. Liu S, Tang Z, Wang Z, Peng Z, Wang E, Dong S (2000) J Mater Chem 10:2727–2733

    Article  CAS  Google Scholar 

  35. Liu S, Cheng L, Dong S (2002) Electroanalysis 14:569–574

    Article  CAS  Google Scholar 

  36. Cheng L, Cox JA (2002) Chem Mater 14:6–8

    Article  CAS  Google Scholar 

  37. Wiaderek KM, Cox JA (2011) Electrochim Acta 56:3537–3542

    Article  CAS  Google Scholar 

  38. Cox JA, Holmstrom SD, Tess ME (2000) Talanta 52:1081–1086

    Article  CAS  Google Scholar 

  39. Szot K, Lesniewski A, Niedziolka J, Jonnson M, Martin R, Rizzi C, Gaillon L, Marken F, Rogalski J, Opallo M (2008) J Electroanal Chem 623:170–176

    Google Scholar 

  40. Szot K, Lynch RP, Lesniewski A, Majewska E, Sirieix-Plenet J, Gaillon L, Opallo M (2011) Electrochim Acta 56:10306–10312

    Article  CAS  Google Scholar 

  41. Celebanska A, Tomaszewska D, Lesniewski A, Opallo M (2011) Biosens Bioelectron 26:4417–4422

    Article  CAS  Google Scholar 

  42. Cox JA, Kulesza PJ (1984) Anal Chem 56:1021–1025

    Article  CAS  Google Scholar 

  43. Cox JA, Gray TJ (1990) Anal Chem 62:2742–2744

    Article  CAS  Google Scholar 

  44. Cox JA, Alber KS, Brockway CA, Tess ME, Gorski W (1995) Anal Chem 67:993–998

    Article  CAS  Google Scholar 

  45. Loetanantawong B, Suracheep C, Somasundrum M, Surareungchai W (2004) Anal Chem 76:2266–2272

    Article  CAS  Google Scholar 

  46. Wei X, Dickman MH, Pope MT (1997) Inorg Chem 36:130–131

    Article  CAS  Google Scholar 

  47. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) J Chem Soc Chem Commun: 801–802

  48. Etienne M, Goux A, Sibottier E, Walcarius A (2009) J Nanosci Nanotechnol 9:2398–2406

    Article  CAS  Google Scholar 

  49. Cheng L, Pacey GE, Cox JA (2001) Electrochim Acta 46:4223–4228

    Article  CAS  Google Scholar 

  50. Wang J, Li HW, Martinez S, Sanchez J (1991) Anal Chem 63:398–400

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. National Institutes of Health by grant R15GM087662-01 to JAC. Support for PJK and IAR was from the Foundation for Polish Science under Mistrz Program and by National Science Center (Poland) under Maestro Project 2012/04/AST400287.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Cox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehdi, B.L., Rutkowska, I.A., Kulesza, P.J. et al. Electrochemically assisted fabrication of size-exclusion films of organically modified silica and application to the voltammetry of phospholipids. J Solid State Electrochem 17, 1581–1590 (2013). https://doi.org/10.1007/s10008-013-2077-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2077-4

Keywords

Navigation