Skip to main content
Log in

Immobilization of nanobeads on a surface to control the size, shape, and distribution of pores in electrochemically generated sol–gel films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemically assisted deposition of an ormosil film at a potential where hydrogen ion is generated as the catalyst yields insulating films on electrodes. When the base electrode is modified with 20-nm poly (styrene sulfonate), PSS, beads bound to the surface with 3-aminopropyltriethoxysilane (APTES), and using (CH3) 3SiOCH3 as the precursor, the resulting film of organically modified silica (ormosil) has cylindrical channels that reflect both the diameter of the PSS and the distribution of the APTES-PSS on the electrode. At an electrode modified by a 20-min immersion in 0.5 mmol dm−3 APTES followed by a 30-s immersion in PSS, a 20-min electrolysis at 1.5 V in acidified (CH3) 3SiOCH3 resulted in an ormosil film with 20-nm pores separated by 100 nm. Cyclic voltammetry of Ru (CN) 6 4− at scan rates above 5 mV s−1 yielded currents controlled primarily by linear diffusion. Below 5 mV s−1, convection rather than the expected factor, radial diffusion, apparently limited the current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cox JA (2011) J Solid State Electrochem 15:1495–1507

    Article  CAS  Google Scholar 

  2. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic, San Diego

    Google Scholar 

  3. Lee UH, Yang JH, Lee HJ, Park JY, Lee KR, Kwon YU (2008) J Mater Chem 18:881–1888

    Article  Google Scholar 

  4. Sheffer M, Groysman A, Mandler D (2003) Corros Sci 45:2893–2904

    Article  CAS  Google Scholar 

  5. Etienne M, Guillemin Y, Grosso G, Walcarius A (2013) Anal Bioanal Chem 405:1497–1512

    Article  CAS  Google Scholar 

  6. Shacham R, Avnir D, Mandler D (1999) Adv Mater 11:384–388

    Article  CAS  Google Scholar 

  7. Shacham R, Avnir D, Mandler D (2004) J Sol-Gel Sci Technol 31:329–334

    Article  CAS  Google Scholar 

  8. Shacham R, Mandler D, Avnir D (2004) Chem Eur J 10:1936–1943

    Article  CAS  Google Scholar 

  9. Wandstrat MM, Spendel WU, Pacey GE, Cox JA (2007) Electroanalysis 19:139–143

    Article  CAS  Google Scholar 

  10. Cox JA, Wiaderek KM, Mehdi BL, Gudorf BP, Ranganathan D, Zamponi S, Berrettoni M (2011) J Solid State Electrochem 15:2409–2417

    Article  CAS  Google Scholar 

  11. Ranganathan D, Zamponi S, Berrettoni M, Mehdi BL, Cox JA (2010) Talanta 82:1149–1155

    Article  CAS  Google Scholar 

  12. Tanev PT, Pinnavaia TJ (1995) A neutral templating route to mesoporous molecular sieves. Science 267:865–857

    Article  CAS  Google Scholar 

  13. Walcarius A, Sibottier E, Etienne M, Ghanbaja J (2007) Nature Mater 6:602–608

    Article  CAS  Google Scholar 

  14. Goux A, Etienne M, Aubert E, Lecomte C, Ghanbaja J, Walcarius A (2009) Chem Mater 21:731–741

    Article  CAS  Google Scholar 

  15. Walcarius A (2013) Chem Soc Rev 42:4098–4140

    Article  CAS  Google Scholar 

  16. Etienne M, Guillemin Y, Grosso D, Walcarius A (2013) Anal Bioanal Chem 405:1497–1512

    Article  CAS  Google Scholar 

  17. Brinker CJ, Lu YF, Sellinger A, Fan HY (1999) Adv Mater 11:579–585

    Article  CAS  Google Scholar 

  18. Miyata H, Kawashima Y, Itoh M, Watanabe M (2005) Chem Mater 17:5323–5327

    Article  CAS  Google Scholar 

  19. Ghosh K, Vyas SM, Lehmler HJ, Rankin SE, Knutson BL (2007) J Phys Chem B 111:363–370

    Article  CAS  Google Scholar 

  20. Wei TC, Hillhouse HW (2007) 23:5689–5699

  21. Poltorak L, Herzog G, Walcarius A (2013) Electrochem Comm 37:76–79

    Article  CAS  Google Scholar 

  22. Herzog G, Vodolazkaya NA, Walcarius A (2013) Electroanalysis 25:2595–2603

    Article  CAS  Google Scholar 

  23. Kanungo M, Collinson MM (2004) J Chem Soc Chem Commun 548–549

  24. Kanungo M, Deepa PN, Collinson MM (2004) Chem Mater 16:5535–5541

    Article  CAS  Google Scholar 

  25. Carrasquilla C, Li Y, Brennan JD (2011) Anal Chem 83:957–965

    Article  CAS  Google Scholar 

  26. Etienne M, Sallard S, Schröder M, Guillemin Y, Mascotto S, Smarsly BM, Walcarius A (2010) Chem Mater 22:3426–3432

    Article  CAS  Google Scholar 

  27. Mehdi BL, Rutkowska IA, Kulesza PJ, Cox JA (2013) J Solid State Electrochem 17:1581–1590

    Article  CAS  Google Scholar 

  28. Li J, Xiao FN, Xia XH (2012) Analyst 137:5245–5250

    Article  CAS  Google Scholar 

  29. Rutkowska IA, Sek JP, Mehdi BL, Kulesza PJ, Cox JA (2014) Electrochim Acta 122:197–203

    Article  CAS  Google Scholar 

  30. Murray RW (2008) Chem Rev 108:2688–2720

    Article  CAS  Google Scholar 

  31. Zhang B, Zhang Y, White HS (2004) Anal Chem 76:6229–6238

    Article  CAS  Google Scholar 

  32. Zhang B, Zhang Y, White HS (2006) Anal Chem 78:477–483

    Article  CAS  Google Scholar 

  33. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York

    Google Scholar 

  34. Li Y, Maire HC, Ito T (2007) Langmuir 23:12771–12776

    Article  CAS  Google Scholar 

  35. Noël JM, Velmurugan J, Gökmeşe E, Mirkin MV (2013) J Solid State Electrochem 17:385–389

    Article  Google Scholar 

  36. Lanyon YH, De Marzi G, Watson YE, Quinn AJ, Gleeson JP, Redmond G, Arrigan DWM (2007) Anal Chem 79:3048–3055

    Article  CAS  Google Scholar 

  37. Miller CJ, Majda M (1985) J Am Chem Soc 107:1419–1420

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported in part by a grant to J.A.C. from the US National Institutes of Health through R15GM087662-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Cox.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciabocco, M., Berrettoni, M., Zamponi, S. et al. Immobilization of nanobeads on a surface to control the size, shape, and distribution of pores in electrochemically generated sol–gel films. J Solid State Electrochem 19, 2087–2094 (2015). https://doi.org/10.1007/s10008-014-2709-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2709-3

Keywords

Navigation