Skip to main content
Log in

Nonenzymatic glucose sensing at ruthenium dioxide–poly(vinyl chloride)–Nafion composite electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Development of nonenzymatic glucose sensors with high reproducibility and stability is an urgent need to reduce cost of regular diabetic monitoring. Here, we have fabricated ruthenium dioxide–poly(vinyl chloride)–Nafion (RuO2–PVC–Nafion) composite for direct glucose sensing in sodium hydroxide and phosphate buffer nonenzymatically for the first time. The restricted activity of the RuO2–PVC film electrode in alkaline pH is extended to neutral pH using Nafion as an outer membrane, which reduces the distance between Ru active sites by bridging effect and improves the electrode stability. The catalytic rate, measured in terms of change of RuO2 resistance, is similar irrespective of the medium for the high temperature annealed RuO2 (700 °C), whereas the low temperature annealed RuO2 (300 °C) is highly sensitive for the change in the pH of the solution. This is revealed by observing large Michaelis–Menten kinetic constant K M for the RuO2 (700 °C) than the low temperature annealed RuO2 (300 °C) due to effective increase in the catalytic active sites similar to oxygen evolution reaction. Contrast to this, the buffer solution does not influence significantly the apparent K M observed for RuO2 (300 °C) and has greater impact on the high temperature 500 and 700 °C annealed RuO2 samples. Cyclic voltammetry, chrono amperommetry, and electrochemical impedance spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction techniques are used for characterization of the sensor behavior. The RuO2–PVC–Nafion senses glucose selectively in the presence of potential interferences like fructose, galactose, mannose, sucrose, starch, uric acid, ascorbic acid, dopamine, and catechol in NaOH and phosphate buffer. Glucose sensing in the blood serum of the diabetic and nondiabetic patients is made. The results suggest that the RuO2–PVC–Nafion is a promising candidate for the development of nonenzymatic glucose sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Newman JD, Turner APF (2005) Biosens Bioelectron 20:2435–2453

    Article  CAS  Google Scholar 

  2. Clark JLC, Lyons C, Aead ANY (1962) Science 102:29–45

    CAS  Google Scholar 

  3. Deng CY, Chen JH, Chen XL, Mao CH, Nie LH, Yao SZ (2008) Biosens Bioelectron 23:1272–1277

    Article  CAS  Google Scholar 

  4. Poitout V, Moatti Sirat D, Reach G, Zhang Y, Wilson G, Lemonnier F, Klein J (1993) Diabetologia 36:658–665

    Article  CAS  Google Scholar 

  5. Bindra D, Zhang YN, Wilson G, Sternberg R, Thevenot D, Moatti D, Reach G (1991) Anal Chem 63:1692–1696

    Article  CAS  Google Scholar 

  6. Xu H, Malladi K, Wang C, Kulinsky L, Song M, Madou M (2008) Biosens Bioelectron 23:1637–1644

    Article  CAS  Google Scholar 

  7. Zhao HT, Ju HX (2006) Anal Biochem 350:138–144

    Article  CAS  Google Scholar 

  8. Rahman MDM, Ahammad AJS, Jin JH, Ahn SJ, Lee JJ (2010) Sensors 10:4855–4886

    Article  CAS  Google Scholar 

  9. Park SJ, Boo HK, Chung TD (2006) Anal Chim Acta 556:46–57

    Article  CAS  Google Scholar 

  10. Babu TGS, Ramachandran T (2010) Electrochim Acta 55:1612–1618

    Article  CAS  Google Scholar 

  11. Kang XH, Mai ZB, Zou XY, Cai PX, Mo JY (2007) Anal Biochem 363:143–150

    Article  CAS  Google Scholar 

  12. Kumar KS, Haridoss P, Seshadri SK (2008) Surf Coat Technol 202:1764–1770

    Article  CAS  Google Scholar 

  13. Wang JP, Thomas DF, Chen AC (2008) Anal Chem 80:997–1004

    Article  CAS  Google Scholar 

  14. Yuan JH, Wang K, Xia XH (2005) Adv Funct Mater 15:803–809

    Article  CAS  Google Scholar 

  15. Vassilyev YB, Khazova OA, Nikolaeva NN (1985) J Electroanal Chem 196:105–125

    Article  Google Scholar 

  16. Park SJ, Chung TD, Kim HC (2003) Anal Chem 75:3046–3049

    Article  CAS  Google Scholar 

  17. Song YY, Zhang D, Gao W, Xia XH (2005) Chem Eur J 11:2177–2182

    Article  CAS  Google Scholar 

  18. Azdic RR, Hsiao MW, Yeager EB (1989) J Electroanal Chem 260:475–485

    Article  Google Scholar 

  19. Bai Y, Yang W, Sun Y, Sun C (2008) Sens Actuat B 134:471–476

    Article  Google Scholar 

  20. Mena ML, Yanez Sedeno PY, Pingarro JM (2005) Anal Biochem 336:20–27

    Article  CAS  Google Scholar 

  21. Welch CM, Compton RG (2006) Anal Bioanal Chem 384:601–619

    Article  CAS  Google Scholar 

  22. Yi Q, Yu W (2009) Microchim Acta 165:381–386

    Article  CAS  Google Scholar 

  23. Tominaga M, Shimazoe T, Nagashima M, Taniguchi I (2005) Electrochem Commun 7:189–193

    Article  CAS  Google Scholar 

  24. Tominaga M, Shimazoe T, Nagashima M, Kusuda H, Kubo A, Kuwahara Y, Taniguchi I (2006) J Electroanal Chem 590:37–46

    Article  CAS  Google Scholar 

  25. Aoun SB, Dursun Z, Koga T, Bang GS, Sotomura T, Taniguchi I (2004) J Electroanal Chem 567:175–183

    Article  Google Scholar 

  26. Li J, Yuan R, Chai Y, Che X, Li W, Zhong X (2011) Microchim Acta 172:163–169

    Article  CAS  Google Scholar 

  27. Hui S, Zhang J, Chen X, Xu H, Ma D, Liu Y, Tao B (2011) Sens Actuat B 155:592–597

    Article  Google Scholar 

  28. Kang X, Mai Z, Zou X, Cai P, Mo J (2007) Anal Biochem 363:143–150

    Article  CAS  Google Scholar 

  29. Male KB, Hrapovic S, Liu Y, Wang D, Luong JHT (2004) Anal Chim Acta 516:35–41

    Article  CAS  Google Scholar 

  30. Wu H, Cao W, Li Y, Liu G, Wen Y, Yang H, Yang S (2010) Electrochim Acta 55:3734–3740

    Article  CAS  Google Scholar 

  31. Casella IG, Gatta M, Guascito MR, Cataldi TRI (1997) Anal Chim Acta 357:63–71

    Article  CAS  Google Scholar 

  32. Xu Q, Zhao Y, Xu JZ, Zhu JJ (2006) Sens Actuat B 114:379–386

    Article  Google Scholar 

  33. Liua Y, Tengb H, Houc H, Youa T (2009) Biosens Bioelect 24:3329–3334

    Article  Google Scholar 

  34. Mu Y, Jia D, He Y, Miao Y, Wu H (2011) Biosens Bioelectr 26:2948–2952

    Article  CAS  Google Scholar 

  35. You T, Niwa O, Chen Z, Hayashi K, Tomita M, Hirono S (2003) Anal Chem 75:5191–5196

    Article  CAS  Google Scholar 

  36. Bai Y, Sun Y, Sun C (2008) Biosens Bioelectron 24:579–585

    Article  CAS  Google Scholar 

  37. Cherevko S, Chung CH (2009) Sens Actuat B 142:216–223

    Article  Google Scholar 

  38. Crouch E, Cowell DC, Hoskins S, Pittson RW, Hart JP (2005) Biosens Bioelectron 21:712–718

    Article  CAS  Google Scholar 

  39. Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Biosens Bioelectron 26:542–548

    Article  CAS  Google Scholar 

  40. Li C, Liu Y, Li L, Du Z, Xu SJ, Zhang M, Yin X, Wang T (2008) Talanta 77:455–459

    Article  CAS  Google Scholar 

  41. Miao F, Tao B, Sun L, Liu T, You J, Wang L, Chu PK (2009) Sens Actuat B 141:338–342

    Article  Google Scholar 

  42. Pham XH, Bui MPN, Li CA, Han KN, Kim JH, Won H, Seong GH (2010) Anal Chim Acta 671:36–40

    Article  CAS  Google Scholar 

  43. Yang YJ, Hu S (2010) Electrochim Acta 55:3471–3476

    Article  CAS  Google Scholar 

  44. Zhou YG, Yang S, Qian QY, Xia XH (2009) Electrochem Commun 11:216–219

    Article  CAS  Google Scholar 

  45. Zhang WD, Chen J, Jiang LC, Yu YX, Zhang JQ (2010) Microchim Acta 168:259–265

    Article  Google Scholar 

  46. Li LH, Zhang WD (2008) Microchim Acta 163:305–311

    Article  CAS  Google Scholar 

  47. Li Y, Song YY, Yang C, Xia XH (2007) Electrochem Commun 9:981–988

    Article  CAS  Google Scholar 

  48. Chen XL, Pan HB, Liu HF, Du M (2010) Electrochim Acta 56:636–643

    Article  CAS  Google Scholar 

  49. Gutes C, Carraro R, Maboudian (2011) Electrochim Acta 56:5855–5859

    Article  CAS  Google Scholar 

  50. Luo J, Jiang S, Zhang H, Jiang J, Liu X (2012) Anal Chim Acta 709:47–53

    Article  CAS  Google Scholar 

  51. Kumar AS, Chen PY, Chien SH, Zen JM (2005) Electroanalysis 17:210–222

    Article  CAS  Google Scholar 

  52. Lakshmi D, Whitcombe MJ, Davis F, Sharma PS, Prasad BB (2011) Electroanalysis 23:305–320

    Article  CAS  Google Scholar 

  53. Kotzian P, Brazdilova P, Kalcher K, Vytras K (2005) Anal Lett 38:1099–1113

    Article  CAS  Google Scholar 

  54. López PB, Sola J, Alegret S, Merko A (2008) Electroanalysis 20:603–610

    Article  Google Scholar 

  55. Dharuman V, Pillai KC (2006) J Solid State Electrochem 10:967–979

    Article  CAS  Google Scholar 

  56. Kumar AS, Pillai KC (2000) J Solid State Electrochem 4:408–416, and references therein

    Article  CAS  Google Scholar 

  57. Brown AP, Anson FC (1967) Anal Chem 49:1589–1593

    Article  Google Scholar 

  58. Smith DF, Willman K, Kuo K, Murray RW (1979) J Electroanal Chem 95:217–239

    Article  CAS  Google Scholar 

  59. Wang G, Wei Y, Zhang W, Zhang X, Fang B, Wang L (2010) Microchim Acta 168:87–92

    Article  CAS  Google Scholar 

  60. Mahesh Kumar M, Post ML (2005) J Appl Phys 97:114916

    Google Scholar 

  61. Li M, Fereira A, Sinclair DCJ (2005) Appl Phys 98:084101

  62. Suman CK, Prasad K, Choudary RN (2006) J Mater Sci 41:369–375

    Article  CAS  Google Scholar 

  63. Li YJ, Chen XM, Hou RZ, Tang YH (2006) Solid State Commun 137:863–868

    Google Scholar 

  64. Baumann PK, Doppelt P, Fröhlich K, Gueroudji L, Cambel V, Machajdi D, Schumacher M, Lindner J, Schienle F, Burgess D, Strauch G, Juergensen H, Guillon H, Jimenez C (2010) Int J Integrated Ferroelectrics 44:135–142

    Article  Google Scholar 

  65. Matsumoto T, Ohashi A, Ito N, Fujiwara H, Matsumoto T (2001) Biosens Bioelectron 16:271–276

    Article  CAS  Google Scholar 

  66. Yang Q, Atanasov P, Wilkins E (1998) Sens Actuat B 46:249–256

    Article  Google Scholar 

  67. Marioli JM, Kuwana T (1992) Electrochim Acta 37:1187–1197

    Article  CAS  Google Scholar 

  68. Mauritz KA, Moore RB (2004) Chem Rev 104:4535–4585

    Article  CAS  Google Scholar 

  69. Yang C, Srinivasan S, Bocarsly AB, Tulyani S, Benziger JB (2004) J Memb Sci 237:145–161

    Article  CAS  Google Scholar 

  70. Burke LD, Murphy OJ, O’Neill JF, Venkatesan S (1977) J Chem Soc Faraday Trans I 73:1659–1671

    Article  CAS  Google Scholar 

  71. Lyons MEG, Fitzerald CA, Smyth MR (1994) Analyst 119:855–861

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. V. Dharuman acknowledges Indian Council of Medical Research (ICMR), New Delhi, India for the financial support through the project (F.No. 5/3/8105/2011-RHN). The author J. Shankara Narayanan acknowledges DST(SR/S1/PC-11/2010) for the project fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Dharuman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1501 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayanan, J.S., Anjalidevi, C. & Dharuman, V. Nonenzymatic glucose sensing at ruthenium dioxide–poly(vinyl chloride)–Nafion composite electrode. J Solid State Electrochem 17, 937–947 (2013). https://doi.org/10.1007/s10008-012-1942-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1942-x

Keywords

Navigation