Skip to main content
Log in

Electrochemistry of complex formation of carbaryl with ds-DNA using [Ru(bpy)2dppz]2+ as probe

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An electrochemical competition method was used to study the interaction of carbaryl with natural double-stranded DNA (ds-DNA). Layer-by-layer films of negatively charged natural ds-DNA and polycationic poly (diallyldimethylammonium chloride) were assembled on the surface of a glassy carbon electrode. The DNA intercalator [Ru(bpy)2(dppz)]2+ (bpy = 2, 2′-bipyridine, dppz = dipyrido [3, 2-a: 2′,3′-c] phenazine) was chosen as an electrochemical probe. Tripropylamine was used as an electron donor to chemically amplify the oxidation current of the probe. In order to examine the effects of substituting group on the binding interaction of carbaryl with DNA, the interaction of naphthalene or α-naphthol with DNA was also studied by square wave voltammetry (SWV). The values of binding constant K b of the three compounds to DNA are determined, which fall in the range of (0.2 × 105) to (1.3 × 105) M−1. The correlation suggests that the functional groups may play an important role in the DNA/analyte competition binding interaction. We demonstrated that it is conducive to the combination of small molecules and DNA when the functional groups are hydrophobic and have the lone-pair electrons as the electron donor. Furthermore, UV-absorption and fluorescence intensity of Ru-dppz decreases in the presence of carbaryl. These characteristics strongly support the intercalation of carbaryl into double-stranded DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Henderson L, Albertini S, Aardema M (2000) Mutat Res Genet Toxicol Environ 464:123–128

    Article  CAS  Google Scholar 

  2. Babich H, Borenfreund E (1991) Toxicol In Vitro 5:91–100

    Article  CAS  Google Scholar 

  3. Zhang Y, Hu NF (2007) Electrochem Commun 9:35–41

    Article  CAS  Google Scholar 

  4. Flaskos J, Mclean WG, Hargreaves AJ (1994) Toxicol Lett 70:71–76

    Article  CAS  Google Scholar 

  5. Gollapudi BB, Mendrala AL, Linscombe VA (1995) Mutat Res 342:25–36

    Article  CAS  Google Scholar 

  6. Leibold E, Schwarz LR (1993) Carcinogenesis 14:2377–2382

    Article  CAS  Google Scholar 

  7. Pasquini R, Scassellatisforzolini G, Dolara P, Pampanella L, Villarini M, Caderni G, Fazi M, Fatigoni C (1994) Pharmacol Toxicol 75:170–176

    Article  CAS  Google Scholar 

  8. Delescluse C, Ledirac N, Li RY, Piechocki MP, Hines RN, Gidrol X, Rahmani R (2001) Biochem Pharmacol 61:399–407

    Article  CAS  Google Scholar 

  9. Sun H, Shen OX, Xu XL, Song L, Wang XR (2008) Toxicology 249:238–242

    Article  CAS  Google Scholar 

  10. Rauf S, Gooding JJ, Akhtar K, Ghauri MA, Rahman M, Anwar MA, Khalid AM (2005) J Pharma Biomed 37:205–217

    Article  CAS  Google Scholar 

  11. Rivas GA, Pedano ML, Ferreyra NF (2005) Anal Lett 38:2653–2703

    Article  CAS  Google Scholar 

  12. Ferreyra NF, Rivas GA (2009) Electroanalysis 21:1665–1671

    Article  CAS  Google Scholar 

  13. Arias P, Ferreyra NF, Rivas GA, Bollo S (2009) J Electroanal Chem 634:123–126

    Article  CAS  Google Scholar 

  14. Minasyan SH, Tavadyan LA, Antonyan AP, Davtyan HG, Parsadanyan MA, Vardevanyan PO (2006) Bioelectrochemistry 68:48–55

    Article  CAS  Google Scholar 

  15. Huang RF, Wang LR, Guo LH (2010) Anal Chim Acta 676:41–45

    Article  CAS  Google Scholar 

  16. Dervan PB (2001) Bioorgan Med Chem 9:2215–2235

    Article  CAS  Google Scholar 

  17. Graves DE, Velea LM (2000) Curr Org Chem 4:915–929

    Article  CAS  Google Scholar 

  18. Shao Z, Li Y, Yang Q, Wang J, Li G (2010) Anal Bioanal Chem 398:2963–2967

    Article  CAS  Google Scholar 

  19. Pitterl F, Chervet J, Oberacher H (2010) Anal Bioanal Chem 397:1203–1215

    Article  CAS  Google Scholar 

  20. Shah A, Zaheer M, Qureshi R, Akhter Z, Nazar MF (2010) Spectrochim Acta A 75:1082–1087

    Article  Google Scholar 

  21. Wang LR, Qu N, Guo LH (2008) Anal Chem 80:3910–3914

    Article  CAS  Google Scholar 

  22. Zeglis BM, Pierre VC, Barton JK (2007) Chem Commun 44:4565–4579

    Article  Google Scholar 

  23. Dickeson JE, Summers LA (1970) Aust J Chem 23:1023–1027

    Article  CAS  Google Scholar 

  24. Amouyal E, Homsi A, Chambron JC, Sauvage JP (1990) J Soc Dalton 6:1841–1845

    Article  Google Scholar 

  25. Huang CZ, Li YF, Feng P (2001) Talanta 55:321–328

    Article  CAS  Google Scholar 

  26. Kang TF, Wang F, Lu LP, Zhang Y, Liu TS (2010) Sensors Actuators B Chem 145:104–109

    Article  Google Scholar 

  27. Scatchard G (1949) Ann N Y Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  28. Cheng YC, Prusoff WH (1973) Biochem Pharmacol 22:3099–3108

    Article  CAS  Google Scholar 

  29. Carlson DL, Huchital DH, Mantilla EJ, Sheardy RD, Murphy WR (1993) J Am Chem Soc 115:6424–6425

    Article  CAS  Google Scholar 

  30. Friedman AE, Chambron JC, Sauvage JP, Turro NJ, Barton JK (1990) J Am Chem Soc 112:4960–4962

    Article  CAS  Google Scholar 

  31. Loontiens FG, Mclaughlin LW, Diekmann S, Clegg RM (1991) Biochemistry 30:182–189

    Article  CAS  Google Scholar 

  32. Lerman LS (1961) J Mol Biol 3:18–30

    Article  CAS  Google Scholar 

  33. Wang LR, Wang Y, Chen JW, Guo LH (2009) Toxicology 262:250–257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from the Key Program of Science and Technology of Beijing Municipal Education Commission (No. KZ201110005006), the Beijing Natural Science Foundation (No. 8102009), the National Natural Science Foundation of China (No. 20247002, No. 21005005) and Beijing Municipal institution of higher learning academic innovating group projects (No. PHR 201007105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Fang Kang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, Y., Kang, TF. & Lu, LP. Electrochemistry of complex formation of carbaryl with ds-DNA using [Ru(bpy)2dppz]2+ as probe. J Solid State Electrochem 17, 129–136 (2013). https://doi.org/10.1007/s10008-012-1861-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1861-x

Keywords

Navigation