Skip to main content
Log in

Chemically functionalized glassy carbon spheres: a new covalent bulk modified composite electrode for the simultaneous determination of lead and cadmium

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new type of covalent bulk modified glassy carbon composite electrode has been fabricated and utilized in the simultaneous determination of lead and cadmium ions in aqueous medium. The covalent bulk modification was achieved by the chemical reduction of 2-hydroxybenzoic acid diazonium tetrafluroborate in the presence of hypophosphorous acid as a chemical reducing agent. The covalent attachment of the modifier molecule was examined by studying Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and the surface morphology was examined by scanning electron microscopy images. The electrochemistry of modified glassy carbon spheres was studied by its cyclic voltammetry to decipher the complexing ability of the modifier molecules towards Pb2+ and Cd2+ ions. The developed sensor showed a linear response in the concentration range 1–10 μM with a detection limit of 0.18 and 0.20 μM for lead and cadmium, respectively. The applicability of the proposed sensor has been checked by measuring the lead and cadmium levels quantitatively from sewage water and battery effluent samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cesarino I, Cavaltheiro EJ, Brett CMA (2010) Electroanalysis 22:61–68

    Article  CAS  Google Scholar 

  2. El Mhammedi MA, Achak M, Chtaini A (2009) J Hazard Mater 161:55–61

    Article  CAS  Google Scholar 

  3. Viyannalage LT, Bliznakov SB, Dimitrov N (2008) Anal Chem 80:2042–2049

    Article  CAS  Google Scholar 

  4. Darwish IA, Blake DA (2002) Anal Chem 74:52–58

    Article  CAS  Google Scholar 

  5. Tan MG, Zhang GL, Li XL, Zhang YX, Yue WS, Chen JM, Wang YS, Li AG, Zhang M, Shan ZC (2006) Anal Chem 78:8044–8055

    Article  CAS  Google Scholar 

  6. Taher MA (2003) Croatica Chem Acta 76:273–277

    CAS  Google Scholar 

  7. Vassileva E, Quetel C (2004) Anal Chim Acta 519:79–86

    Article  CAS  Google Scholar 

  8. Wan Z, Xu Z, Wang J (2006) Analyst 131:141–147

    Article  CAS  Google Scholar 

  9. Li J, Guo S, Zhai Y, Wang E (2009) Anal Chim Acta 649:196–201

    Article  CAS  Google Scholar 

  10. Jena BK, Raj CR (2008) Anal Chem 80:4836–4884

    Article  CAS  Google Scholar 

  11. Ramesh P, Sampath S (2001) Analyst 126:1872–1877

    Article  CAS  Google Scholar 

  12. Zen JM, Kumar AS, Tsai DM (2003) Electroanalysis 15:1073–1087

    Article  CAS  Google Scholar 

  13. Kooi SE, Schlecht U, Burghard M, Kern K (2002) Angew Chem 41:1353–1355

    Article  CAS  Google Scholar 

  14. Morton J, Havens N, Mugweru A, Wanekaya AK (2009) Electroanalysis 21:1597–1603

    Article  CAS  Google Scholar 

  15. Somashekarappa MP, Sampath S (2004) Anal Chim Acta 503:195–201

    Article  CAS  Google Scholar 

  16. Alexander MY, Kuwana T (1978) Anal Chem 50:640–645

    Article  Google Scholar 

  17. Jaegfeldt H, Kuwana T, Johansson G (1983) J Am Chem Soc 105:1805–1814

    Article  CAS  Google Scholar 

  18. Xu J, Chen Q, Swain GM (1998) Anal Chem 70:3146–3154

    Article  CAS  Google Scholar 

  19. Khan MR, Khoo SB (1996) Anal Chem 68:3290–3294

    Article  CAS  Google Scholar 

  20. Motta N, Guadalupe AR (1994) Anal Chem 66:566–571

    Article  CAS  Google Scholar 

  21. Pandurangappa M, Ramakrishnappa T (2010) Mater Chem Phys 122:567–573

    Article  CAS  Google Scholar 

  22. Wildgoose GG, Pandurangappa M, Lawrence NS, Jiang L, Jones GJJ, Compton RG (2003) Talanta 60:887–893

    Article  CAS  Google Scholar 

  23. Yang H, McCreery RL (1999) Anal Chem 71:4081–4087

    Article  CAS  Google Scholar 

  24. Pandurangappa M, Lawrence NS, Compton RG (2002) Analyst 127:1568–1571

    Article  CAS  Google Scholar 

  25. Boehm HP (1994) Carbon 32:759–769

    Article  CAS  Google Scholar 

  26. Ramesha GK, Sampath S (2007) Electroanalysis 19:2472–2478

    Article  CAS  Google Scholar 

  27. Pandurangappa M, Ramakrishnappa T, Compton RG (2009) Carbon 47:2186–2193

    Article  CAS  Google Scholar 

  28. Abiman P, Crossley A, Wildgoose GG, Jones JH, Compton RG (2007) Langmuir 23:7847–7852

    Article  CAS  Google Scholar 

  29. Shams E, Alibeygi F, Torabi R (2006) Electroanalysis 18:773–778

    Article  CAS  Google Scholar 

  30. Li Y, Liu X, Zeng X, Liu Y, Wei W, Luo S (2009) Sens Actuators B 139:604–610

    Article  Google Scholar 

  31. Degefa TH, Chandravanshi BS, Alemu H (1999) Electroanalysis 11:1305–1311

    Article  CAS  Google Scholar 

  32. Inczedy J (1976) Analytical applications of complex equilibria. Ellis Horwood, New York

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support and award of Junior Research Fellowship (JRF) to GKR by the Department of Science and Technology, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malingappa Pandurangappa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghu, G.K., Sampath, S. & Pandurangappa, M. Chemically functionalized glassy carbon spheres: a new covalent bulk modified composite electrode for the simultaneous determination of lead and cadmium. J Solid State Electrochem 16, 1953–1963 (2012). https://doi.org/10.1007/s10008-011-1595-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1595-1

Keywords

Navigation