Skip to main content
Log in

Electrochemical formation and properties of two-component films of transition metal complexes and C60 or C70

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemically active polymers have been formed during electro-reduction carried out in solution containing fullerenes, C60 or C70, and transition metal complexes of Pd(II), Pt(II), Rh(III), and Ir(I). In these films, fullerene moieties are covalently bounded to transition metal atoms (Pd and Pt) or their complexes (Rh and Ir) to form a polymeric network. All films exhibit electrochemical activity at negative potentials due to the fullerene cages reduction process. For all studied metal complexes, yields of formation of films containing C70 are higher than yields of electrodeposition of their C60 analogs. C70 /M films also exhibit higher porosity in comparison to C60/M layers. The differences in film morphology and efficiency of polymer formation are responsible for differences in electrochemical responses of these films in acetonitrile containing supporting electrolyte only. C70/M films shows more reversible voltammeric behavior in negative potential range. They also show higher potential range of electrochemical stability. Processes of film formation and electrochemical properties of polymers depend on the transition metal ions or atoms bonding fullerene cages into polymeric network. The highest efficiency of polymerization was observed for fullerene/Pd and fullerene/Rh films. In the case of fullerene/Pd films, the charge transfer processes related to the fullerene moieties reduction in negative potential range exhibit the best reversibility among all of the studied systems. Capacitance performances of C60/Pd and C70/Pd films deposited on the porous Au/quartz electrode were also compared. Capacitance properties of both films are significantly affected by the conditions of electropolymerization. Only a fraction of the film having a direct contact with solution contributes to pseudocapacitance. Capacitance properties of these films also depend on the size of cations of supporting electrolyte. The C70/Pd film exhibits much better capacitance performance comparison to C60/Pd polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Novak P, Muller K, Santhanam KSV, Haas O (1997) Chem Rev 97:207

    Article  CAS  Google Scholar 

  2. Burke A (2000) J Power Sources 91:37

    Article  CAS  Google Scholar 

  3. Wrighton MS (1986) Science 231:32

    Article  CAS  Google Scholar 

  4. Fortier G, Brassard E, Belanger D (1990) Biosens Bioelectron 5:473

    Article  CAS  Google Scholar 

  5. Yoshima H, Kobayashi M, Lee KB, Chung D, Heeger AJ, Wudl F (1987) J Electrochem Soc 134:46

    Article  Google Scholar 

  6. Wudl F (2002) J Mater Chem 12:1959

    Article  CAS  Google Scholar 

  7. Chen Y, Huang ZE, Cai RF, Yu BC (1998) Eur Polym J 34:137

    Article  CAS  Google Scholar 

  8. Echegoyen L, Echegoyen LE (1998) Acc Chem Res 31:593

    Article  CAS  Google Scholar 

  9. Winkler K, Balch AL, Kutner W (2006) J Solid State Electrochem 10:761

    Article  CAS  Google Scholar 

  10. Gunes S, Neugebauer H, Sariciftci NS (2007) Chem Rev 107:1324

    Article  Google Scholar 

  11. Rao CNR, Seshadri R, Govindaraj A, Sen R (1995) Mater Sci Eng R15:209

    CAS  Google Scholar 

  12. Wilson LJ, Cagle DW, Thrash TP, Kennel SJ, Mirzadeh S, Alford JM, Ehrhardt GJ (1999) Coord Chem Rev 190–192:199

    Article  Google Scholar 

  13. Yeretzian C, Hansen K, Diedrich FN, Whetten RL (1992) Nature 359:44

    Article  CAS  Google Scholar 

  14. Ito A, Morikawa T, Takahashi T (1993) Chem Phys Lett 211:333

    Article  CAS  Google Scholar 

  15. Zhou P, Dong ZH, Rao A, Ecklund PC (1993) Chem Phys Lett 211:337

    Article  CAS  Google Scholar 

  16. Takahashi N, Dock H, Matsuzawa N, Ata M (1993) J Appl Phys 74:5790

    Article  CAS  Google Scholar 

  17. Yamawaki H, Yoshida M, Kakadate Y, Usuba S, Yokoi H, Fujiwara S, Aoki K, Ruoff R, Malhorta R, Lorents DC (1993) J Phys Chem 97:11161

    Article  CAS  Google Scholar 

  18. Rao AM, Zhou P, Wang KA, Hager GT, Holden JM, Wang Y, Lee WT, Bi XX, Eklund PC, Cornett DC, Duncan MA, Amster IJ (1993) Science 250:955

    Google Scholar 

  19. Loy DA, Assink RA (1992) J Am Chem Soc 114:3977

    Article  CAS  Google Scholar 

  20. Bunker CE, Lawson GE, Sun YP (1995) Macromolecules 28:7959

    Article  Google Scholar 

  21. Cao T, Webber SE (1996) Macromolecules 29:3826

    Article  CAS  Google Scholar 

  22. Ford WT, Graham TD, Mourey HT (1997) Macromolecules 30:6422

    Article  CAS  Google Scholar 

  23. Hirsch A, Li Q, Wudl F (1991) Angew Chem Int Ed 30:1309

    Article  Google Scholar 

  24. Sun YP, Liu B, Lawson GE (1997) Photochem Photobiol 66:301

    Article  CAS  Google Scholar 

  25. Hawker CJ (1994) Macromolecules 27:4836

    Article  CAS  Google Scholar 

  26. Rubin Y, Khan S, Freedberg D, Yeretzian C (1993) J Am Chem Soc 118:344

    Article  Google Scholar 

  27. Fedurco M, Costa DA, Balch AL, Fawcett WR (1995) Angew Chem Int Ed Engl 34:194

    Article  CAS  Google Scholar 

  28. Winkler K, Costa DA, Balch AL, Fawcett WR (1995) J Phys Chem 99:17431

    Article  CAS  Google Scholar 

  29. Krinichnaya EP, Moravsky AP, Efimov O, Sobczak JW, Winkler K, Kutner W, Balch AL (2005) J Mater Chem 15:1468

    Article  CAS  Google Scholar 

  30. Balch AL, Costa DA, Winkler K (1998) J Am Chem Soc 120:9614

    Article  CAS  Google Scholar 

  31. Winkler K, de Bettencourt-Dias A, Balch AL (1999) Chem Mater 11:2265

    Article  CAS  Google Scholar 

  32. Winkler K, de Bettencourt-Dias A, Balch AL (2000) Chem Mater 12:1386

    Article  CAS  Google Scholar 

  33. Winkler K, Noworyta K, Kutner W, Balch AL (2000) J. Electrochem Soc 147:2597

    Article  CAS  Google Scholar 

  34. Hayashi A, de Bettencourt-Dias A, Winkler K, Balch AL (2002) J Mater Chem 12:2116

    Article  CAS  Google Scholar 

  35. Plonska ME, de Bettencourt-Dias A, Balch AL, Winkler K (2003) Mater Chem 15:4122

    Article  CAS  Google Scholar 

  36. Plonska ME, Makar A, Winkler K, Balch AL (2004) Pol J Chem 78:1431

    CAS  Google Scholar 

  37. Winkler K, Plonska-Brzezinska ME, Gadde S, D’Souza F, Balch AL (2006) Electroanalysis 18:841

    Article  Google Scholar 

  38. Winkler K, Grodzka E, D’Souza F, Balch AL (2007) J Electrochem Soc 154:K1

    Article  CAS  Google Scholar 

  39. Forster D (1969) Inorg Nucl Chem Lett 5:433

    Article  CAS  Google Scholar 

  40. Winkler K, Noworyta K, Sobczak JW, Wu CT, Chen LC, Kutner W, Balch AL (2003) J Mater Chem 23:518

    Article  Google Scholar 

  41. Ward MD (1995) In: Rubinstein I (ed) Physical Electrochemistry. Marcel Dekker, New York Basel Hong Kong

  42. Grodzka E, Nieciecka M, Winkler K (2008) J Solid State Electrochem 12:215

    Google Scholar 

Download references

Acknowledgment

Support from the Polish State Committee for Scientific Research (grant N204 3747 33) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Winkler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grodzka, E., Grabowska, J., Wysocka-Żołopa, M. et al. Electrochemical formation and properties of two-component films of transition metal complexes and C60 or C70 . J Solid State Electrochem 12, 1267–1278 (2008). https://doi.org/10.1007/s10008-007-0490-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0490-2

Keywords

Navigation