Skip to main content
Log in

Coordination complexes of 4-methylimidazole with ZnII and CuII in gas phase and in water: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A quantum chemistry study of mononuclear metal coordination with four 4-methylimidazole ligands (4-MeIm) was investigated. The four complexes [Cu(4-MeIm)4]2+, [Cu(4-MeIm)4, H2O]2+, [Zn(4-MeIm)4]2+ and [Zn(4-MeIm)4, H2O]2+ were studied with particular attention to the Nπ or Nτ possible coordinations of the 4-MeIm ring with the metals, using different DFT methods. The results suggest that the Nτ coordination of 4-MeIm ring to ZnII or CuII is more favorable whatever the level of calculation. In contrast, the addition of one water molecule in the first coordination sphere of the metal ions provides five-coordinated complexes showing no Nπ or Nτ preferences. There is good agreement between the DFT-calculated structure and those available experimentally. When metal ions are four-fold coordinated, they adopt a tetrahedral geometry. When CuII and ZnII are five-fold coordinated, highly symmetric structures or intermediate structures are calculated. Similar energies are calculated for different structures, suggesting flat potential energy surfaces. The addition of implicit solvent modifies the calculated first coordination sphere, especially for [Cu(4-MeIm)4, H2O]2+ structures. The QTAIM and ELF topological analyses of the interaction between CuII and the neutral ligands, clearly indicate a dative bonding with a strong ionic character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Degtyar E, Harrington MJ, Politi Y et al (2014) The mechanical role of metal ions in biogenic protein-based materials. Angew Chem Int Ed 130:16156–16157. doi:10.1002/anie.201404272

    Google Scholar 

  2. Kogot JM, England HJ, Strouse GF, Logan TM (2008) Single peptide assembly onto a 1.5-nm Au surface via a histidine tag single peptide assembly onto a 1.5-nm Au surface via a histidine tag. J Am Chem Soc 130:16156–16157. doi:10.1021/ja8064717

  3. Barszcz B, Glowiak T, Jezierska J (1999) Crystal and molecular structures of eight-coordinate (CuN4O4) and six-coordinate (CuN4O2) Cu(II) complexes with 4-methyl-5-imidazole-carboxaldehyde or 1-benzyl-2-hydroxymethylimidazole, respectively. Spectroscopic and potentiometric studies. Polyhedron 18:3713–3721

    Article  CAS  Google Scholar 

  4. Andreini C, Bertini I, Cavallaro G (2011) Minimal functional sites allow a classification of zinc sites in proteins. PLoS ONE. doi:10.1371/journal.pone.0026325

    Google Scholar 

  5. Karlin S, Zhu ZY (1997) Classification of mononuclear zinc metal sites in protein structures. Proc Natl Acad Sci U S A 94:14231–14236. doi:10.1073/pnas.94.26.14231

    Article  CAS  Google Scholar 

  6. Hough MA, Strange RW, Hasnain SS (2000) Conformational variability of the Cu site in one subunit of bovine CuZn superoxide dismutase: the importance of mobility in the Glu119-Leu142 loop region for catalytic function. J Mol Biol 304:231–241. doi:10.1006/jmbi.2000.4186

    Article  CAS  Google Scholar 

  7. Ferrer P, Jiménez-Villacorta F, Rubio-Zuazo J et al (2014) Environmental influence on Zn-histidine complexes under no-packing conditions. J Phys Chem B 118:2842–2850. doi:10.1021/jp411655e

    Article  CAS  Google Scholar 

  8. Fermi E (1927) Un metodo statistico per la determinazione di alcune proprietá dell’atomo. Rend Accad Naz Lincei 6:602–607

    CAS  Google Scholar 

  9. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Accounts 120:215–241. doi:10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  10. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37 (2):785–789

  11. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. doi:10.1063/1.3382344

    Google Scholar 

  12. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724. doi:10.1063/1.1674902

    Article  CAS  Google Scholar 

  13. Dolg M, Stoll H, Preuss H, Pitzer RM (1993) Relativistic and correlation effects for element 105 (hahnium, Ha): a comparative study of M and MO (M = Nb, Ta, Ha) using energy-adjusted ab initio pseudopotentials. J Phys Chem 97:5852–5859. doi:10.1021/j100124a012

    Article  CAS  Google Scholar 

  14. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270. doi:10.1063/1.448799

    Article  CAS  Google Scholar 

  15. Cossi M, Scalmani G, Rega N, Barone V (2002) New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys 117:43. doi:10.1063/1.1480445

    Article  CAS  Google Scholar 

  16. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681. doi:10.1002/jcc.10189

    Article  CAS  Google Scholar 

  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Had M, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Had M, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian Inc, Wallingford. doi:10.1017/CBO9781107415324.004

    Google Scholar 

  18. Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc, Shawnee Mission

    Google Scholar 

  19. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. doi:10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  20. Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23:597–604. doi:10.1016/S0097-8485(99)00039-X

    Article  CAS  Google Scholar 

  21. Portmann S, Lüthi HP (2000) MOLEKEL: an interactive molecular graphics tool. Chimia 54:766–770

    CAS  Google Scholar 

  22. T. A. Keith (2016) AIMAll (Version 16.01.09), TK Gristmill Software, Overland Park KS U (aim.tkgristmill.com)

  23. Bader RFW (1990) Atoms in molecules. 59773335. doi: 10.1002/0470845015.caa012

  24. Macchi P, Proserpio DM, Sironi A (1998) Experimental electron density in a transition metal dimer: metal-metal and metal-ligand bonds. J Am Chem Soc 120:13429–13435. doi:10.1021/ja982903m

    Article  CAS  Google Scholar 

  25. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403. doi:10.1063/1.458517

    Article  CAS  Google Scholar 

  26. Silvi B, Savin A (1994) Classification of chemical-bonds based on topological analysis of electron localization functions. Nature 371:683–686. doi:10.1038/371683a0

    Article  CAS  Google Scholar 

  27. Silvi B, Fourre I, Alikhani ME (2005) The topological analysis of the electron localization function. A key for a position space representation of chemical bonds. Monatshefte Fur Chem 136:855–879. doi:10.1007/s00706-005-0297-8

    Article  CAS  Google Scholar 

  28. Poater J, Duran M, Solà M, Silvi B (2005) Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem Rev 105:3911–3947. doi:10.1021/cr030085x

    Article  CAS  Google Scholar 

  29. Silvi B, Gillespie RJ, Gatti C (2013) Compr Inorg Chem II. doi:10.1016/B978-0-08-097774-4.00907-4

    Google Scholar 

  30. Lepetit C, Silvi B, Chauvin R (2003) ELF analysis of out-of-plane aromaticity and in-plane homoaromaticity in carbon[N]annulenes and [N]pericyclynes. J Phys Chem A 107:464–473. doi:10.1021/jp026521l

    Article  CAS  Google Scholar 

  31. Silvi B (2004) How topological partitions of the electron distributions reveal delocalization. Phys Chem Chem Phys 6:256–260. doi:10.1039/b311272a1

    Article  CAS  Google Scholar 

  32. Hough MA, Hasnain SS (2003) Structure of fully reduced bovine copper zinc superoxide dismutase at 1.15 Å. Structure 11:937–946. doi:10.1016/S0969-2126(03)00155-2

    Article  CAS  Google Scholar 

  33. Hakansson K, Carlsson M, Svensson LA, Liljas A (1992) Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J Mol Biol 227:1192–1204. doi:10.1016/0022-2836(92)90531-N

    Article  CAS  Google Scholar 

  34. Branco RJF, Fernandes PA, Ramos MJ (2006) Molecular dynamics simulations of the enzyme Cu, Zn superoxide dismutase. J Phys Chem B 110:16754–16762. doi:10.1021/jp056855l

    Article  CAS  Google Scholar 

  35. Xerri B, Petitjean H, Dupeyrat F et al (2014) Mid- and far-infrared marker bands of the metal coordination sites of the histidine side chains in the protein Cu, Zn-superoxide dismutase. Eur J Inorg Chem 2014:4650–4659. doi:10.1002/ejic.201402263

    Article  CAS  Google Scholar 

  36. Liu S, Wu Q, Schmider HL et al (2000) Syntheses, structures, and electroluminescence of new blue/green. J Am Chem Soc 122:3671–3678

    Article  CAS  Google Scholar 

  37. Yue SM, Bin XH, Ma JF et al (2006) Design and syntheses of blue luminescent zinc(II) and cadmium(II) complexes with bidentate or tridentate pyridyl-imidazole ligands. Polyhedron 25:635–644. doi:10.1016/j.poly.2005.07.021

    Article  CAS  Google Scholar 

  38. Ohtsu H, Shimazaki Y, Odani A et al (2000) Synthesis and characterization of imidazolate-bridged dinuclear complexes as active site models of Cu, Zn-SOD. J Am Chem Soc 122:5733–5741. doi:10.1021/ja994050j

    Article  CAS  Google Scholar 

  39. Chen P, Solomon EI (2004) Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site. J Am Chem Soc 126:4991–5000. doi:10.1021/ja031564g

    Article  CAS  Google Scholar 

  40. Blackburn NJ, Rhames FC, Ralle M, Jaron S (2000) Major changes in copper coordination accompany reduction of peptidylglycine monooxygenase: implications for electron transfer and the catalytic mechanism. J Biol Inorg Chem 5:341–353

    Article  CAS  Google Scholar 

  41. Pasquarello A, Petri I, Salmon PS et al (2001) First solvation shell of the Cu(II) aqua ion: evidence for fivefold coordination. Science 291:856–859. doi:10.1126/science.291.5505.856

    Article  CAS  Google Scholar 

  42. Díaz N, Suarez D, Sordo TL (2006) Quantum chemical study on the coordination environment of the catalytic zinc ion in matrix metalloproteinases. J Phys Chem B 110:24222–24230. doi:10.1021/jp0656882

    Article  Google Scholar 

  43. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173. doi:10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  44. Espinosa E, Alkorta I, Rozas I et al (2001) About the evaluation of the local kinetic, potential and total energy densities in closed-shell interactions. Chem Phys Lett 336:457–461. doi:10.1016/S0009-2614(01)00178-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Calculations (projects x2015087394 and x2016087394) were carried out on the IBM SP4 computers of the CINES (Centre Informatique National de l’Enseignement Supérieur) in Montpellier (France) and of the IDRIS (Institut des Ressources en Informatique Scientifique) in Orsay (France). MB is grateful to MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique), Tunisia for an 11-month grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothée Berthomieu.

Additional information

This paper belongs to Topical Collection Festschrift in Honor of Henry Chermette.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukallaba, M., Kerkeni, B., Lepetit, C. et al. Coordination complexes of 4-methylimidazole with ZnII and CuII in gas phase and in water: a DFT study. J Mol Model 22, 301 (2016). https://doi.org/10.1007/s00894-016-3167-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3167-x

Keywords

Navigation