Skip to main content
Log in

Interplay between halogen and chalcogen bonding in the XCl∙∙∙OCS∙∙∙NH3 (X = F, OH, NC, CN, and FCC) complex

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The interplay between halogen and chalcogen bonding in the XCl∙∙∙OCS and XCl∙∙∙OCS∙∙∙NH3 (X = F, OH, NC, CN, and FCC) complex was studied at the MP2/6-311++G(d,p) computational level. Cooperative effect is observed when halogen and chalcogen bonding coexist in the same complex. The effect is studied by means of binding distance, interaction energy, and cooperative energy. Molecular electrostatic potential calculation reveals the electrostatic nature of the interactions. Cooperative effect is explained by the difference of the electron density. Second-order stabilization energy was calculated to study the orbital interaction in the complex. Atoms in molecules analysis was performed to analyze the enhancement of the electron density in the bond critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chalasinski G, Szczesniak MM (2000) Chem Rev 100:4227–4252

    Article  CAS  Google Scholar 

  2. Rudkevich DM (2004) Angew Chem Int Ed 43:558–571

    Article  CAS  Google Scholar 

  3. Saalfrank RW, Maid H, Scheurer A (2008) Angew Chem Int Ed 47:8794–8824

    Article  CAS  Google Scholar 

  4. Metrangolo P, Resnati G (eds) (2007) Halogen bonding: fundamentals and applications, structure and bonding. Springer, Berlin

    Google Scholar 

  5. Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Angew Chem Int Ed 39:1782–1786

    Article  CAS  Google Scholar 

  6. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114–6127

    Article  CAS  Google Scholar 

  7. Legon AC (2010) Phys Chem Chem Phys 12:7736–7747

    Article  CAS  Google Scholar 

  8. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  9. Cavallo G, Metrangolo P, Pilati T, Resnati G, Sansotera M, Terraneo G (2010) Chem Soc Rev 39:3772–3783

    Article  CAS  Google Scholar 

  10. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci U S A 101:16789–16794

    Article  CAS  Google Scholar 

  11. Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Chem Soc Rev 40:2267–2278

    Article  CAS  Google Scholar 

  12. Lu YX, Shi T, Wang Y, Yang HY, Yan XH, Luo XM, Jiang HL, Zhu WL (2009) J Med Chem 52:2854–2862

    Article  CAS  Google Scholar 

  13. Lu YX, Wang Y, Zhu WL (2010) Phys Chem Chem Phys 12:4543–4551

    Article  CAS  Google Scholar 

  14. Wang WZ, Tian AM, Wong NB (2005) J Phys Chem A 109:8035–8040

    Article  CAS  Google Scholar 

  15. Politzer P, Murray JS (2002) Theor Chem Acc 108:134–142

    Article  CAS  Google Scholar 

  16. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  17. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  18. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  19. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comput Theor Chem 998:2–8

    Article  CAS  Google Scholar 

  20. Politzer P, Murray JS (2013) Chem Phys Chem 17:278–294

    Google Scholar 

  21. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  22. Politzer P, Murray JS (2013) Cryst Eng Comm 15:3145–3150

    Article  CAS  Google Scholar 

  23. Politzer P, Murray JS (2002) Theor Chem Acc 108:134–142

    Article  CAS  Google Scholar 

  24. Wang WZ, Ji BM, Zhang Y (2009) J Phys Chem A 113:8132–8135

    Article  Google Scholar 

  25. Iwaoka M, Takemoto S, Tomoda S (2002) J Am Chem Soc 124:10613–10620

    Article  CAS  Google Scholar 

  26. Bleiholder C, Werz DB, Köppel H, Gleiter R (2006) J Am Chem Soc 128:2666–2674

    Article  CAS  Google Scholar 

  27. Bleiholder C, Gleiter R, Werz DB, Köppel H (2007) Inorg Chem 46:2249–2260

    Article  CAS  Google Scholar 

  28. Murray JS, Lane P, Politzer P (2008) Int J Quantum Chem 108:2770–2781

    Article  CAS  Google Scholar 

  29. Vijay D, Sastry GN (2010) Chem Phys Lett 485:235–242

    Article  CAS  Google Scholar 

  30. Parra RD, Ohlssen J (2008) J Phys Chem A 112:3492–3498

    Article  CAS  Google Scholar 

  31. Egi M, Sarkhel S (2007) Acc Chem Res 40:197–205

    Article  Google Scholar 

  32. Alkorta I, Blanco F, Elguero J (2008) J Phys Chem A 112:6753–6759

    Article  CAS  Google Scholar 

  33. Politzer P, Murray JS, Concha MC (2007) J Mol Model 13:643–650

    Article  CAS  Google Scholar 

  34. Alkorta I, Blanco F, Elguero J, Estarellas C, Frontera A, Quinonero D, Deya PM (2009) J Chem Theory Comput 5:1186–1194

    Article  CAS  Google Scholar 

  35. Frontera A, Quinonero D, Costa A, Ballester P, Deya PM (2007) New J Chem 31:556–560

    Article  CAS  Google Scholar 

  36. Estarellas C, Frontera A, Quinonero D, Alkorta I, Deya PM, Elguero J (2009) J Phys Chem A 113:3266–3273

    Article  CAS  Google Scholar 

  37. Lankau T, Wu YC, Zou JW, Yu CH (2008) J Theor Comput Chem 7:13–35

    Article  CAS  Google Scholar 

  38. Politzer P, Murray JS, Lane P (2007) Int J Quantum Chem 107:3046–3052

    Article  CAS  Google Scholar 

  39. Zhao Q, Feng DC, Hao JC (2011) J Mol Model 17:2817–2823

    Article  CAS  Google Scholar 

  40. Li QZ, Li R, Liu XF, Li WZ, Chen JB (2012) Chem Phys Chem 13:1205–1212

    CAS  Google Scholar 

  41. Li R, Li QZ, Chen JB, Liu ZB, Li WZ (2011) Chem Phys Chem 11:2289–2295

    Google Scholar 

  42. Lu YX, Liu YT, Li HY, Zhu X, Liu HL, Zhu WL (2012) J Phys Chem A 116:2591–2597

    Article  CAS  Google Scholar 

  43. Li HY, Lu YX, Liu YT, Zhu X, Liu HL, Zhu WL (2012) Phys Chem Chem Phys 14:9948–9955

    Article  CAS  Google Scholar 

  44. Manna D, Mugesh G (2012) J Am Chem Soc 134:4269–4279

    Article  CAS  Google Scholar 

  45. Metrangolo P, Resnati G (2012) Nat Chem 4:437–438

    Article  CAS  Google Scholar 

  46. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  47. Frisch MJ (2009) Gaussian 09 (Revision B.01). Gaussian Inc, Pittsburgh

    Google Scholar 

  48. Lu T, Chen FW (2012) J Comp Chem 33:580–592

    Article  Google Scholar 

  49. Reed AE, Curtiss LA, Weinhold F (1998) Chem Rev 88:899–926

    Article  Google Scholar 

  50. Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, New York

    Google Scholar 

  51. Todd A Keith (2013) AIM All Version 13.05.06, aim.tkgristmill.com

Download references

Acknowledgments

The author is grateful for the help of the high performance computing center in Shandong University and reasonable advice of Prof. Feng in Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q. Interplay between halogen and chalcogen bonding in the XCl∙∙∙OCS∙∙∙NH3 (X = F, OH, NC, CN, and FCC) complex. J Mol Model 20, 2458 (2014). https://doi.org/10.1007/s00894-014-2458-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2458-3

Keywords

Navigation