Skip to main content
Log in

Long wavelength absorbing carbostyrils as test cases for different TDDFT procedures and solvent models

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The vertical excitation energies of 3,4-dicyano-6-methoxy and 3,4-dicyano-6,7-dimethoxy carbostyril have been computed with different approximations for the time-dependent density functional theory (TD-DFT) procedure and with different implementations of the continuum solvation model COSMO. Different DFT functionals were tested in TD-DFT and Tamm-Dancoff approximations (TDA) for the excitation energies in the gas phase. TDA-B3LYP showed the best agreement with the experimental data. Then TDA-B3LYP computations were performed combined with the COSMO model of solvation comparing a linear response (LR) and a post-configuration interaction (CI) implementation of the fast solvent reorganization. The post-CI solvent model overestimates the π→π* transitions and strongly underestimates the n→π* transition. The TDA approximation in combination with the linear response implementation of the COSMO solvation model perfectly computes the experimental results. TDA-LR is the most reliable method for the computation of the vertical excitation energies in a solvent. Comparison with explicit solvent calculations shows there is only a minor effect on the energies of the electronic interaction of the solute with the solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Uray G, Kelterer A-M, Hashim J, Glasnov TN, Kappe CO, Fabian WMF (2009) Bisquinolones as chiral fluorophores—a combined experimental and computational study of absorption and emission characteristics. J Mol Struct 929:85–96

    Article  CAS  Google Scholar 

  2. Stadlbauer W, Badgujar NS, Avhale AB, Uray G (2009) Syntheses and fluorescent properties of 2-Amino substituted 6,7-Dimethoxy-4-(trifluoromethyl)quinolones. J Heterocycl Chem 46:415–420

    Article  CAS  Google Scholar 

  3. Avhale AB, Prokopcová H, Sefcovicová J, Steinschifter W, Täubl AE, Uray G, Stadlbauer W (2008) 4-Cyano-6,7-dimethoxycarbostyrils with Solvent- and pH-Independent high fluorescence quantum yields and emission maxima. Eur J Org Chem 3:563–571

    Google Scholar 

  4. Uray G, Badgujar NS, Kovackova S, Stadlbauer W (2008) Fluorescent 6-hydroxy- and 6,7-dihydroxy-4-trifluoromethylcarbostyrils and formation of O-carboxymethylated derivatives via O-succinimide esters. J Heterocycl Chem 45:165–172

    Article  CAS  Google Scholar 

  5. Badgujar NS, Pazicky M, Traar P, Terec A, Uray G, Stadlbauer W (2006) N-carboxymethylated 6,7-dimethoxy-4-trifluoromethylcarbostyrils as fluorescence markers for amino acids, peptides, amino carbohydrates and amino polysaccharides. Eur J Org Chem 12:2715–2722

    Google Scholar 

  6. Strohmeier GA, Fabian WMF, Uray G (2004) A combined experimental and theoretical approach toward the development of optimized luminescent carbostyrils. Helv Chim Acta 87:215–226

    Article  CAS  Google Scholar 

  7. Uray G, Niederreiter KS, Belaj F, Fabian WMF (1999) Long-wavelength-absorbing and -emitting carbostyrils with high fluorescence quantum yields. Helv Chim Acta 82:1408–1417

    Article  CAS  Google Scholar 

  8. Fabian WMF, Niederreiter KS, Uray G, Stadlbauer W (1999) Substituent effects on absorption and fluorescence spectra of carbostyrils. J Mol Struct 477:209–220

    Article  CAS  Google Scholar 

  9. Enoua GC, Uray G, Stadlbauer W (2012) 3-aryl-6-methoxy-2-oxo-1,2-dihydroquinoline-4-carbonitriles as Solvent and pH Independent Green Fluorescent Dyes. J Heterocycl Chem 49:1415–1421

    Article  CAS  Google Scholar 

  10. Enoua GC, Lahm G, Uray G, Stadlbauer W (2014) 6-Methoxy-2-oxo-1,2-dihydroquinoline-3,4-dicarbonitriles, A red compound class with solvent and pH independent green fluorescence maxima. J Heterocycl Chem doi:10.1002/jhet.1758

  11. Enoua GC, Lahm G, Uray G, Stadlbauer W (2014) Syntheses and fluorescent properties of 6-Methoxy-2-oxoquinoline-3,4-dicarbonitriles and 6,7-Dimethoxy-2-oxoquinoline-3,4-dicarbonitriles. J Heterocycl Chem doi:10.1002/jhet.1865

  12. Furche F, Ahlrichs R (2002) Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys 117:7433–7447

    Article  CAS  Google Scholar 

  13. Furche F, Ahlrichs R (2004) Time-dependent density functional methods for excited state properties. J Chem Phys 121:12772–12773

    Article  CAS  Google Scholar 

  14. Casida ME (1995) Time-dependent density functional response theory for molecules. In: Chong DP (ed) Recent advances in density functional methods, part I. World Scientific, Singapore, pp 155–192

    Chapter  Google Scholar 

  15. Furche F, Rappoport D (2005) Density functional methods for excited states: Equilibrium structure and electronic spectra. In: Olivucci M (ed) Computational photochemistry. Elsevier, Amsterdam, pp 93–128

    Chapter  Google Scholar 

  16. Chantzis A, Laurent AD, Adamo C, Jacquemin D (2013) Is the Tamm-Dancoff approximation reliable for the calculation of absorption and fluorescence band shapes? J Chem Theory Comput 9:4517–4525

    Article  CAS  Google Scholar 

  17. Charaf-Eddin A, Planchat A, Mennucci B, Adamo C, Jacquemin D (2013) Choosing a functional for computing absorption and fluorescence band shapes with TD-DFT. J Chem Theory Comput 9:2749–2760

    Article  CAS  Google Scholar 

  18. Jacquemin D, Perpète EA, Ciofini I, Adamo C (2009) Accurate simulation of optical properties in dyes. Acc Chem Res 42:326–334

    Article  CAS  Google Scholar 

  19. Jacquemin D, Perpete EA, Ciofini I, Adamo C, Valero R, Zhao Y, Truhlar DG (2010) On the performances of the M06 family of density functionals for electronic excitation energies. J Chem Theory Comput 6:2071–2085

    Article  CAS  Google Scholar 

  20. Caricato M, Trucks GW, Frisch MJ, Wiberg KB (2010) Electronic transition energies: a study of the performance of a large range of single reference density functional and wave function methods on valence and rydberg states compared to experiment. J Chem Theory Comput 6:370–383

    Article  CAS  Google Scholar 

  21. Goerigk L, Moellmann J, Grimme S (2009) Computation of accurate excitation energies for large organic molecules with double-hybrid density functionals. Phys Chem Chem Phys 11:4611–4620

    Article  CAS  Google Scholar 

  22. Kantchev EAB, Norsten TB, Sullivan MB (2012) Time-dependent density functional theory (TDDFT) modelling of Pechmann dyes: from accurate absorption maximum prediction to virtual dye screening. Org Biomol Chem 10:6682–6692

    Article  CAS  Google Scholar 

  23. Cerón-Carrasco P, Fanuel M, Charaf-Eddin A, Jacquemin D (2013) Interplay between solvent models and predicted optical spectra: a TD-DFT study of 7-OH-coumarin. Chem Phys Lett 556:122–126

    Article  Google Scholar 

  24. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  25. Stephens PJ, Devlin FJ, Chablowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  26. Hertwig RH, Koch W (1997) On the parameterization of the local correlation functional: what is Becke-3-LYP? Chem Phys Lett 268:345–351

    Article  CAS  Google Scholar 

  27. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  28. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124:1–15

    Google Scholar 

  29. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  30. Adamo C, Barone V (1999) Toward reliable density functionals without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  31. Tawada Y, Tsuneda T, Yanagisawa S, Yanai Y, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425–8433

    Article  CAS  Google Scholar 

  32. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) GAMESS, Version 1 May 2012 (R2). J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  33. TURBOMOLE V6.3 (2011) A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; Available from http://www.turbomole.com

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian, Inc, Wallingford

    Google Scholar 

  35. Neese F, Wennmohs F (2011) ORCA, An Ab Initio, DFT and Semiempirical electronic structure package, V 2.9.1. MPI for Bioinorganic Chemistry, Mühlheim a.d. Ruhr

    Google Scholar 

  36. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  37. Schaefer A, Horn H, Ahlrichs R (1992) Fully optimized contracted gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Article  CAS  Google Scholar 

  38. Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys 128:044118

    Article  Google Scholar 

  39. Grimme S, Antony J, Ehrlich S, Krieg S (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  40. Klamt A (1996) Calculation of UV/Vis spectra in solution. J Phys Chem 100(9):3349–3353

    Article  CAS  Google Scholar 

  41. Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717

    Article  CAS  Google Scholar 

  42. Wheeler SE, Houk KN (2010) Integration grid errors for Meta-GGA-predicted reaction energies: origin of grid errors for the M06 suite of functionals. J Chem Theory Comput 6:395–404

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Marie Kelterer.

Additional information

This paper belongs to Topical Collection 9th European Conference on Computational Chemistry (EuCo-CC9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelterer, AM., Uray, G. & Fabian, W.M.F. Long wavelength absorbing carbostyrils as test cases for different TDDFT procedures and solvent models. J Mol Model 20, 2217 (2014). https://doi.org/10.1007/s00894-014-2217-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2217-5

Keywords

Navigation