Skip to main content
Log in

Medium-based optimization of an organic solvent-tolerant extracellular lipase from the isolated halophilic Alkalibacillus salilacus

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A haloalkaliphilic solvent-tolerant lipase was produced from Alkalibacillus salilacus within 48 h of growth in liquid medium. An overall 4.9-fold enhanced production was achieved over unoptimized media after medium optimization by statistical approaches. Plackett–Burman screening suggested lipase production maximally influenced by olive oil, KH2PO4, NaCl, and glucose; and response surface methodology predicted the appropriate levels of each parameter. Produced lipase was highly active and stable over broad ranges of temperature (15–65 °C), pH (4.0–11.0), and NaCl concentration (0–30 %) showing excellent thermostable, pH-stable, and halophilic properties. The enzyme was optimally active at pH 8.0 and 40 °C. Majority of cations, except some like Co2+ and Al3+ were positive signals for lipase activity. In addition, the presence of chemical agents and organic solvents with different log P ow was well tolerated by the enzyme. Finally, efficacy of lipase-mediated esterification of various alcohols with oleic acid in organic solvents was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adlercreutz P (2013) Immobilisation and application of lipases in organic media. Chem Soc Rev 42:6406–6436

    Article  CAS  PubMed  Google Scholar 

  • Aghaie-Khouzani M, Forootanfar H, Moshfegh M, Khoshayand MR, Faramarzi MA (2012) Decolorization of some synthetic dyes using optimized culture broth of laccase producing ascomycete Paraconiothyrium variabile. Biochem Eng J 60:9–15

    Article  CAS  Google Scholar 

  • Ahmed EH, Raghavendra T, Madamwar D (2010) An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: application for ethyl caprylate synthesis. Bioresour Technol 101:3628–3634

    Article  CAS  PubMed  Google Scholar 

  • Balan A, Ibrahim D, Abdul-Rahim R (2013) Organic-solvent and surfactant tolerant thermostable lipase, isolated from a thermophilic bacterium, Geobacillus thermodenitrificans IBRL-nra. Adv Stud Biol 5:389–401

    Google Scholar 

  • Boran R, Ugur A (2010) Partial purification and characterization of the organic solvent-tolerant lipase produced by Pseudomonas fluorescens RB02-3 isolated from milk. Prep Biochem Biotechnol 40:229–241

    Article  CAS  PubMed  Google Scholar 

  • Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc Series B Stat Methodol 13:1–45

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Burkert JFM, Maugeri F, Rodrigues MI (2004) Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresour Technol 91:77–84

    Article  CAS  PubMed  Google Scholar 

  • Cappuccino JG, Sherman N (2002) Microbiology: a laboratory manual, 6th edn. Benjamin Cummings, Menlo Park, pp 133–198

    Google Scholar 

  • Cheng SW, Wang YF, Liu FF (2011) Optimization of medium compositions using statistical experimental design to produce lipase by Bacillus subtilis. Chem Biochem Eng Q 25:377–383

    CAS  Google Scholar 

  • Dandavate V, Jinjala J, Keharia H, Madamwar D (2009) Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresour Technol 100:3374–3381

    Article  CAS  PubMed  Google Scholar 

  • de Lourdes Moreno M, Pérez D, García MT, Mellado E (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life 3:38–51

    Article  PubMed Central  PubMed  Google Scholar 

  • Dheeman DS, Frias JM, Henehan GT (2010) Influence of cultivation conditions on the production of a thermostable extracellular lipase from Amycolatopsis mediterranei DSM 43304. J Ind Microbiol Biotechnol 37:1–17

    Article  CAS  PubMed  Google Scholar 

  • Dheeman DS, Henehan GTM, Frías JM (2011) Purification and properties of Amycolatopsis mediterranei DSM 43304 lipase and its potential in flavour ester synthesis. Bioresour Technol 102:3373–3379

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimpour A, Zaliha Abd Rahman RN, Ean Ch’ng DH, Basri M, Salleh AB (2008) A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM. BMC Biotechnol 8:15

  • Enache M, Kamekura M (2010) Hydrolytic enzymes of halophilic microorganisms and their economic values. Rom J Biochem 47:47–59

    CAS  Google Scholar 

  • Esakkiraj P, Prabakaran G, Maruthiah T, Immanuel G, Palavesam A (2014) Purification and characterization of halophilic alkaline lipase from Halobacillus sp. DOI, Proc Natl Acad Sci India, Sect B. doi:10.1007/s40011-014-0437-1

    Google Scholar 

  • Essamri M, Deyris V, Comeau L (1998) Optimization of lipase production by Rhizopus oryzae and study on the stability of lipase activity in organic solvents. J Biotechnol 60:97–103

    Article  CAS  Google Scholar 

  • Gupta N, Sahai V, Gupta R (2007) Alkaline lipase from a novel strain Burkholderia multivorans: statistical medium optimization and production in a bioreactor. Process Biochem 42:518–526

    Article  CAS  Google Scholar 

  • Haaland PD (1989) Experimental design in biotechnology. Marcel Dekker Inc, New York, pp 1–18

    Google Scholar 

  • Hasan-Beikdashti M, Forootanfar H, Safiarian MS, Ameri A, Ghahremani MH, Khoshayand MR, Faramarzi MA (2012) Optimization of culture conditions for production of lipase by a newly isolated bacterium Stenotrophomonas maltophilia. J Taiwan Inst Chem Eng 43:670–677

    Article  CAS  Google Scholar 

  • Hun CJ, Abd Rahman RNZ, Salleh AB, Basri M (2003) A newly isolated organic solvent tolerant Bacillus sphaericus 205y producing organic solvent-stable lipase. Biochem Eng J 15:147–151

    Article  CAS  Google Scholar 

  • Jaeger K-E, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  CAS  PubMed  Google Scholar 

  • Ji Q, Xiao S, He B, Liu X (2010) Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LX1 and its application for biodiesel production. J Mol Catal B Enzym 66:264–269

    Article  CAS  Google Scholar 

  • Khunt M, Pandhi N (2012) Purification and characterization of lipase from extreme halophiles isolated from little rann of Kutch, Gujarat, India. Int J Life Sci Pharma Res 2:L55–L61

    Google Scholar 

  • Kouker G, Jaeger KE (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laane C, Boeren S, Vos K, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30:81–87

    Article  CAS  PubMed  Google Scholar 

  • Li X, Qian P, Wu SG, Yu HY (2014) Characterization of an organic solvent-tolerant lipase from Idiomarina sp. W33 and its application for biodiesel production using Jatropha oil. Extremophiles 18:171–178

    Article  PubMed  Google Scholar 

  • Mahanta N, Gupta A, Khare SK (2008) Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresour Technol 99:1729–1735

    Article  CAS  PubMed  Google Scholar 

  • Marques TA, Baldo C, Borsato D, Buzato JB, Celligoi MAPC (2014) Production and partial characterization of a thermostable, alkaline and organic solvent tolerant lipase from Trichoderma atroviride 676. Int J Sci Technol Res 3:77–83

    Article  Google Scholar 

  • Mehta A, Kumar R, Gupta R (2012) Isolation of lipase producing thermophilic bacteria: optimization of production and reaction conditions for lipase from Geobacillus sp. Acta Microbiol Immunol Hung 59:435–450

    Article  CAS  PubMed  Google Scholar 

  • Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164

    Article  CAS  PubMed  Google Scholar 

  • Meyer RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments. Wiley, Canada

    Google Scholar 

  • Moshfegh M, Shahverdi AR, Zarrini G, Faramarzi MA (2013) Biochemical characterization of an extracellular polyextremophilic a-amylase from the halophilic archaeon Halorubrum xinjiangense. Extremophiles 17:677–687

    Article  CAS  PubMed  Google Scholar 

  • Pérez D, Martín S, Fernández-Lorente G, Filice M, Guisán JM, Ventosa A, García MT, Mellado E (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6:1–11

    Google Scholar 

  • Rao P, Divakar S (2001) Lipase catalyzed esterification of α-terpineol with various organic acids: application of the Plackett–Burman design. Process Biochem 36:1125–1128

    Article  CAS  Google Scholar 

  • Rao PV, Jayaraman K, Lakshmanan CM (1993) Production of lipase by Candida rugosa in solid state fermentation. 2: medium optimization and effect of aeration. Process Biochem 28:391–395

    Article  CAS  Google Scholar 

  • Reis P, Holmberg K, Watzke H, Leser ME, Miller R (2009) Lipases at interfaces: a review. Adv Colloid Interface Sci 147–148:237–250

    Article  PubMed  Google Scholar 

  • Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed 37:1608–1633

    Article  Google Scholar 

  • Sharma D, Sharma B, Shukla AK (2011) Biotechnological approach of microbial lipases: a review. Biotechnol 10:23–40

    Article  CAS  Google Scholar 

  • Sinha R, Khare SK (2014) Effect of organic solvents on the structure and activity of moderately halophilic Bacillus sp. EMB9 protease. Extremophiles. doi:10.1007/s00792-014-0683-4

    PubMed  Google Scholar 

  • Treichel H, de Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV (2010) A review on microbial lipases production. Food Bioprocess Technol 3:182–196

    Article  CAS  Google Scholar 

  • Verger R (1997) Interfacial activation of lipases: facts and artifacts. Trends Biotechnol 15:32–38

    Article  CAS  Google Scholar 

  • Volpato G, Rodrigues RC, Heck JX, Ayub MAZ (2008) Production of organic solvent tolerant lipase by Staphylococcus caseolyticus EX17 using raw glycerol as substrate. J Chem Technol Biotechnol 83:821–828

    Article  CAS  Google Scholar 

  • Wu G, Wu G, Zhan T, Shao Z, Liu Z (2013) Characterization of a cold-adapted and salt-tolerant esterase from a psychrotrophic bacterium Psychrobacter pacificensis. Extremophiles. doi:10.1007/s00792-013-0562-4

    PubMed Central  Google Scholar 

  • Yoo HY, Simkhada JR, Cho SS, Park DH, Kim SW, Seong CN, Yoo JC (2011) A novel alkaline lipase from Ralstonia with potential application in biodiesel production. Bioresour Technol 102:6104–6111

    Article  CAS  PubMed  Google Scholar 

  • Zaks A, Klibanov AM (1988) The Effect of water on enzyme action in organic media. Biol Chem 263:8017–8021

    CAS  Google Scholar 

  • Zaliha RN, Rahman RA, Baharum SN, Salleh AB, Basri M (2006) S5 lipase: an organic solvent tolerant enzyme. J Microbiol 44:583–590

    Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Grant No. 93-01-90-25247 from Tehran University of Medical Sciences, Tehran, Iran to M.A.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Faramarzi.

Additional information

Communicated by A. Driessen.

M. R. Khoshayand is the correspondence for the section of statistical experimental design.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 356 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samaei-Nouroozi, A., Rezaei, S., Khoshnevis, N. et al. Medium-based optimization of an organic solvent-tolerant extracellular lipase from the isolated halophilic Alkalibacillus salilacus . Extremophiles 19, 933–947 (2015). https://doi.org/10.1007/s00792-015-0769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0769-7

Keywords

Navigation