Skip to main content
Log in

Prescriptive analytics: a survey of emerging trends and technologies

  • Regular Paper
  • Published:
The VLDB Journal Aims and scope Submit manuscript

Abstract

This paper provides a survey of the state-of-the-art and future directions of one of the most important emerging technologies within business analytics (BA), namely prescriptive analytics (PSA). BA focuses on data-driven decision-making and consists of three phases: descriptive, predictive, and prescriptive analytics. While descriptive and predictive analytics allow us to analyze past and predict future events, respectively, these activities do not provide any direct support for decision-making. Here, PSA fills the gap between data and decisions. We have observed an increasing interest for in-DBMS PSA systems in both research and industry. Thus, this paper aims to provide a foundation for PSA as a separate field of study. To do this, we first describe the different phases of BA. We then survey classical analytics systems and identify their main limitations for supporting PSA, based on which we introduce the criteria and methodology used in our analysis. We next survey, categorize, and discuss the state-of-the-art within emerging, so-called PSA\(^+\), systems, followed by a presentation of the main challenges and opportunities for next-generation PSA systems. Finally, the main findings are discussed and directions for future research are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Adapted from [101, p. 5])

Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. At the time of publication [73], Tiresias has been tested only with PostgreSQL.

References

  1. Aalst, W.M.P.V.D.: Process Mining—Discovery, Conformance and Enhancement of Business Processes. Springer, Berlin (2011)

    MATH  Google Scholar 

  2. Abbena, E., Salamon, S., Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica. Chapman and Hall/CRC, Boca Raton (2017)

    MATH  Google Scholar 

  3. Akdere, M., Çetintemel, U., Riondato, M., Upfal, E., Zdonik, S.B.: The case for predictive database systems: opportunities and challenges. CIDR 2011, 167–174 (2011)

    Google Scholar 

  4. Aref, M., ten Cate, B., Green, T.J., Kimelfeld, B., Olteanu, D., Pasalic, E., Veldhuizen, T.L., Washburn, G.: Design and implementation of the logicblox system. In: Proceedings of SIGMOD, pp. 1371–1382 (2015)

  5. Basu, A.: Five pillars of prescriptive analytics success. Analyt. Mag. March-April (2013). http://analytics-magazine.org/executive-edge-five-pillars-of-prescriptiveanalytics-success/. Accessed 27 May 2019

  6. Bertsimas, D., Kallus, N.: From predictive to prescriptive analytics. ArXiv e-prints (2014)

  7. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bihis, M., Roychowdhury, S.: A generalized flow for multi-class and binary classification tasks: an azure ml approach. In: 2015 IEEE International Conference on Big Data, pp. 1728–1737 (2015)

  9. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  10. Bixby, R.E.: Solving real-world linear programs: a decade and more of progress. Oper. Res. 50(1), 3–15 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Blockeel, H.: Data mining: from procedural to declarative approaches. New Gener. Comput. 33(2), 115–135 (2015)

    Article  Google Scholar 

  12. Boehm, M., Evfimievski, A.V., Pansare, N., Reinwald, B.: Declarative machine learning—a classification of basic properties and types. CoRR arXiv:abs/1605.05826 (2016)

  13. Bonczek, R.H., Holsapple, C.W., Whinston, A.B.: Foundations of Decision Support Systems. Academic Press, London (2014)

    MATH  Google Scholar 

  14. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  15. Brown, P.G.: Overview of scidb: large scale array storage, processing and analysis. In: Proceedings of SIGMOD, pp. 963–968 (2010)

  16. Brucato, M., Beltran, J.F., Abouzied, A., Meliou, A.: Scalable package queries in relational database systems. PVLDB 9(7), 576–587 (2016)

    Google Scholar 

  17. Burstein, F., Holsapple, C.: Handbook on Decision Support Systems 2: Variations. Springer, Berlin (2008)

    Book  Google Scholar 

  18. Chasseur, C., Li, Y., Patel, J.M.: Enabling JSON document stores in relational systems. WebDB 13, 14–15 (2013)

    Google Scholar 

  19. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. SIGMOD Rec. 26(1), 65–74 (1997)

    Article  Google Scholar 

  20. Chen, D.S., Batson, R.G., Dang, Y.: Applied Integer Programming: Modeling and Solution. Wiley, New York (2010)

    MATH  Google Scholar 

  21. COIN-OR: COIN-OR: Computational infrastructure for operations research—open-source software for the operations research community. https://www.coin-or.org/ (2018). Accessed 22 Mar 2018

  22. Crotty, A., Galakatos, A., Dursun, K., Kraska, T., Binnig, C., Çetintemel, U., Zdonik, S.: An architecture for compiling udf-centric workflows. PVLDB 8(12), 1466–1477 (2015)

    Google Scholar 

  23. Crotty, A., Galakatos, A., Dursun, K., Kraska, T., Çetintemel, U., Zdonik, S.B.: Tupleware: “big” data, big analytics, small clusters. In: CIDR 2015 (2015)

  24. De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22(3), 443–473 (2006)

    Article  Google Scholar 

  25. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Desanctis, G., Gallupe, R.B.: A foundation for the study of group decision support systems. Manag. Sci. 33(5), 589–609 (1987)

    Article  Google Scholar 

  27. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998)

    Article  Google Scholar 

  28. Feng, X., Kumar, A., Recht, B., Ré, C.: Towards a unified architecture for in-RDBMS analytics. In: Proceedings of SIGMOD, pp. 325–336 (2012)

  29. Fischer, U., Dannecker, L., Siksnys, L., Rosenthal, F., Böhm, M., Lehner, W.: Towards integrated data analytics: time series forecasting in DBMS. Datenbank-Spektrum 13(1), 45–53 (2013)

    Article  Google Scholar 

  30. Fischer, U., Rosenthal, F., Lehner, W.: F2DB: the flash-forward database system. In: IEEE 28th ICDE 2012, pp. 1245–1248 (2012)

  31. Frazzetto, D., Neupane, B., Pedersen, T.B., Nielsen, T.D.: Adaptive user-oriented direct load-control of residential flexible devices. In: Proceedings of e-Energy, pp. 1–11 (2018)

  32. Gartner: Flipping to Digital Leadership, Insights from the 2015 Gartner CIO Agenda Report (2015). https://www.gartner.com/imagesrv/cio/pdf/cio_agenda_insights2015.pdf. Accessed 21 Aug 2018

  33. Gartner: Gartner’s 2016 hype cycle for emerging technologies identifies three key trends that organizations must track to gain competitive advantage. https://www.gartner.com/newsroom/id/3412017 (2016). Accessed 22 Mar 2018

  34. Getoor, L.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  35. Ghoting, A., Krishnamurthy, R., Pednault, E.P.D., Reinwald, B., Sindhwani, V., Tatikonda, S., Tian, Y., Vaithyanathan, S.: SystemML: declarative machine learning on MapReduce. In: Proceedings of ICDE, pp. 231–242 (2011)

  36. Gorunescu, F.: Data Mining—Concepts, Models and Techniques, Intelligent Systems Reference Library, vol. 12. Springer, Berlin (2011)

    MATH  Google Scholar 

  37. Goyal, A., Aprilia, E., Janssen, G., Kim, Y., Kumar, T., Mueller, R., Phan, D., Raman, A., Schuddebeurs, J.D., Xiong, J., Zhang, R.: Asset health management using predictive and prescriptive analytics for the electric power grid. IBM J. Res. Dev. 60(1), 1–4 (2016)

    Article  Google Scholar 

  38. Green, T.J., Aref, M., Karvounarakis, G.: Logicblox, platform and language: a tutorial. In: Proceedings of Datalog, pp. 1–8 (2012)

  39. Gröger, C., Schwarz, H., Mitschang, B.: Prescriptive analytics for recommendation-based business process optimization. In: International Conference on Business Information Systems, pp. 25–37 (2014)

  40. Gurobi Optimization LLC: Gurobi Optimizer (2014). http://www.gurobi.com/products/gurobi-optimizer. Accessed 7 May 2019

  41. Haas, P.J., Maglio, P.P., Selinger, P.G., Tan, W.C.: Data is dead... without what-if models. PVLDB 4(12), 1486–1489 (2011)

    Google Scholar 

  42. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10–18 (2009)

    Article  Google Scholar 

  43. Hellerstein, J.M., Ré, C., Schoppmann, F., Wang, D.Z., Fratkin, E., Gorajek, A., Ng, K.S., Welton, C., Feng, X., Li, K., Kumar, A.: The madlib analytics library or MAD skills, the SQL. PVLDB 5(12), 1700–1711 (2012)

    Google Scholar 

  44. High, R.: The Era of Cognitive Systems: An Inside Look at IBM Watson and How It Works. IBM Corporation, Redbooks (2012)

    Google Scholar 

  45. Holsapple, C.W., Lee-Post, A., Pakath, R.: A unified foundation for business analytics. Decis. Support Syst. 64, 130–141 (2014)

    Article  Google Scholar 

  46. Hupfeld, D., Maccioni, R., Sesemann, R., Ravazzolo, D.: Fleet asset capacity analysis and revenue management optimization using advanced prescriptive analytics. J. Revenue Pricing Manag. 15(6), 516–522 (2016)

    Article  Google Scholar 

  47. IBM: IBM DB2 database—database software: IBM analytics. https://www.ibm.com/analytics/us/en/db2/ (2018). Accessed 22 Mar 2018

  48. IBM: Prescriptive analytics—IBM analytics. https://www.ibm.com/analytics/data-science/prescriptive-analytics (2018). Accessed 22 Mar 2018

  49. Inmon, W.H.: Building the Data Warehouse. Wiley, New York (2005)

    Google Scholar 

  50. Jardine, D.A.: The ANSI/SPARC DBMS Model; Proceedings of the Second Share Working Conference on Data Base Management Systems, Montreal, Canada, April 26–30, 1976. Elsevier Science Inc., Amsterdam (1977)

  51. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data Warehouses. Springer, Berlin (2013)

    MATH  Google Scholar 

  52. Kalinin, A., Cetintemel, U., Zdonik, S.: Searchlight: enabling integrated search and exploration over large multidimensional data. Proc. VLDB Endow. 8(10), 1094–1105 (2015)

    Article  Google Scholar 

  53. Kaur, J., Mann, K.S.: AI based healthcare platform for real time, predictive and prescriptive analytics using reactive programming. J. Phys. Conf. Ser. 933, 012010 (2018)

    Article  Google Scholar 

  54. Keen, P.G., Morton, M.S.S.: Decision Support Systems: An Organizational Perspective, vol. 35. Addison-Wesley, Reading (1978)

    Google Scholar 

  55. Khalefa, M.E., Fischer, U., Pedersen, T.B., Lehner, W.: Model-based integration of past and future in timetravel. Proc. VLDB Endow. 5(12), 1974–1977 (2012)

    Article  Google Scholar 

  56. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling. Wiley, New York (2011)

    Google Scholar 

  57. Kraska, T., Talwalkar, A., Duchi, J.C., Griffith, R., Franklin, M.J., Jordan, M.I.: Mlbase: a distributed machine-learning system. In: Proceedings of CIDR (2013)

  58. Kumar, A., McCann, R., Naughton, J., Patel, J.M., Babros, T.E., Hunt, R.J., Koski, K., Strikwerda, J.C., Wade, B.A., Arnold, R.B., et al.: A survey of the existing landscape of ml systems. UW-Madison CS Tech. Rep. TR1827 (2015)

  59. Kumar, A., McCann, R., Naughton, J.F., Patel, J.M.: Model selection management systems: the next frontier of advanced analytics. SIGMOD Rec. 44(4), 17–22 (2015)

    Article  Google Scholar 

  60. Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: IBM ILOG CP optimizer for scheduling. Constraints 23(2), 210–250 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  61. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program analysis and transformation. In: 2nd IEEE ACM CGO, pp. 75–88 (2004)

  62. Linoff, G.S., Berry, M.J.: Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. Wiley, New York (2011)

    Google Scholar 

  63. Luhn, H.P.: A business intelligence system. IBM J. Res. Dev. 2(4), 314–319 (1958)

    Article  MathSciNet  Google Scholar 

  64. Lustig, I., Dietrich, B., Johnson, C., Dziekan, C.: The analytics journey. Analyt. Mag. 3(6), 11–13 (2010)

    Google Scholar 

  65. Madsen, A.L., Jensen, F., Kjærulff, U., Lang, M.: The hugin tool for probabilistic graphical models. Int. J. Artif. Intell. Tools 14(3), 507–544 (2005)

    Article  Google Scholar 

  66. Makhorin, A.: The GNU linear programming kit (GLPK). GNU Software Foundation (2015). https://www.gnu.org/software/glpk/. Accessed 7 May 2019

  67. Makridakis, S., Wheelwright, S.C., Hyndman, R.J.: Forecasting Methods and Applications. Wiley, New York (2008)

    Google Scholar 

  68. Malinowski, E., Zimányi, E.: Advanced Data Warehouse Design—From Conventional to Spatial and Temporal Applications. Data-Centric Systems and Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  69. Mansinghka, V.K., Tibbetts, R., Baxter, J., Shafto, P., Eaves, B.: Bayesdb: a probabilistic programming system for querying the probable implications of data. CoRR arXiv:abs/1512.05006 (2015)

  70. Markl, V.: Breaking the chains: on declarative data analysis and data independence in the big data era. PVLDB 7(13), 1730–1733 (2014)

    Google Scholar 

  71. MathWorks: Matlab—mathworks. https://www.mathworks.com/products/matlab.html (2018). Accessed 22 Mar 2018

  72. Meliou, A., Gatterbauer, W., Suciu, D.: Reverse data management. PVLDB 4(12), 1490–1493 (2011)

    Google Scholar 

  73. Meliou, A., Suciu, D.: Tiresias: the database oracle for how-to queries. In: Proceedings of SIGMOD, pp. 337–348 (2012)

  74. Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J., Tsai, D., Amde, M., Owen, S., et al.: Mllib: machine learning in apache spark. J. Mach. Learn. Res. 17(1), 1235–1241 (2016)

    MathSciNet  MATH  Google Scholar 

  75. Microsoft: Microsoft excel 2016, spreadsheet software, excel free trial. https://products.office.com/en-us/excel (2018). Accessed on 22 Mar 2018

  76. Nagabhushana, S.: Data Warehousing OLAP and Data Mining. New Age International, Chennai (2006)

    Google Scholar 

  77. Nechifor, S., Puiu, D., Tarnauca, B., Moldoveanu, F.: Prescriptive analytics based autonomic networking for urban streams services provisioning. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5 (2015)

  78. Neupane, B., Pedersen, T.B., Thiesson, B.: Utilizing device-level demand forecasting for flexibility markets. In: Proceedings of e-Energy, pp. 108–118 (2018)

  79. Neupane, B., Šikšnys, L., Pedersen, T.B.: Generation and evaluation of flex-offers from flexible electrical devices. In: Proceedings of e-Energy, pp. 143–156 (2017)

  80. Owen, S., Anil, R., Dunning, T., Friedman, E.: Mahout in action. Manning Publications Co, Shelter Island, NY (2011)

  81. Power, D.J., Sharda, R., Burstein, F.: Decision Support Systems. Wiley, New York (2015)

    Google Scholar 

  82. Powers, C.A., Meyer, C.M., Roebuck, M.C., Vaziri, B.: Predictive modeling of total healthcare costs using pharmacy claims data: a comparison of alternative econometric cost modeling techniques. Med. Care 43(11), 1065–1072 (2005)

    Article  Google Scholar 

  83. Pritchard, P.J., Pritchard, R.: MathCAD: A Tool for Engineering Problem Solving (BEST Series). McGraw-Hill Higher Education, New York (1998)

    Google Scholar 

  84. Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edn. McGraw-Hill, New York (2003)

    MATH  Google Scholar 

  85. Recht, B., Re, C., Wright, S., Niu, F.: Hogwild: a lock-free approach to parallelizing stochastic gradient descent. In: Proceedings of the 25th Annual Conference on Neural Information Processing Systems, pp. 693–701 (2011)

  86. Richardson, M., Domingos, P.M.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)

    Article  Google Scholar 

  87. Rusitschka, S., Doblander, C., Goebel, C., Jacobsen, H.A.: Adaptive middleware for real-time prescriptive analytics in large scale power systems. In: Proceedings of Middleware, p. 5 (2013)

  88. Russell, S.J., Norvig, P., Canny, J.F., Malik, J.M., Edwards, D.D.: Artificial Intelligence: A Modern Approach, vol. 2. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  89. SAS: SAS business analytics—SAS. https://www.sas.com/en_us/solutions/business-analytics.html (2018). Accessed 22 Mar 2018

  90. Sauter, V.L.: Decision Support Systems for Business Intelligence. Wiley, New York (2014)

    MATH  Google Scholar 

  91. Shim, J.P., Warkentin, M., Courtney, J.F., Power, D.J., Sharda, R., Carlsson, C.: Past, present, and future of decision support technology. Decis. Support Syst. 33(2), 111–126 (2002)

    Article  Google Scholar 

  92. Siegel, E.: Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die. Wiley, New York (2013)

    Google Scholar 

  93. Šikšnys, L., Pedersen, T.B.: Prescriptive analytics. In: Encyclopedia of Database Systems, 2nd ed. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4614-8265-9_80624

  94. Šikšnys, L., Pedersen, T.B.: Demonstrating solveDB: an SQL-based DBMS for optimization applications. In: Proceedings of ICDE, pp. 1367–1368 (2017)

  95. Smet, G.D.: A decade of optaplanner. https://www.optaplanner.org/blog/2016/08/07/ADecadeOfOptaPlanner.html (2016). Accessed 01 Sept 2018

  96. Soltanpoor, R., Sellis, T.: Prescriptive analytics for big data. In: Databases Theory and Applications—27th Australasian Database Conference, pp. 245–256 (2016)

  97. Song, S., Kim, D.J., Hwang, M., Kim, J., Jeong, D., Lee, S., Jung, H., Sung, W.: Prescriptive analytics system for improving research power. In: 16th IEEE CSE, pp. 1144–1145 (2013)

  98. Souza, G.C.: Supply chain analytics. Bus. Horiz. 57(5), 595–605 (2014)

    Article  Google Scholar 

  99. Stackowiak, R., Rayman, J., Greenwald, R.: Oracle Data Warehousing and Business Intelligence SO. Wiley, New York (2007)

    Google Scholar 

  100. Steinhaus, S.: Comparison of mathematical programs for data analysis. http://www.cybertester.com/data/ncrunch4.pdf (2008). Accessed 24 Aug 2018

  101. Šikšnys, L.: Towards prescriptive analytics in cyber-physical systems. Ph.D. thesis, Aalborg University and Dresden University of Technology (2015)

  102. Šikšnys, L., Pedersen, T.B.: Dependency-based flexoffers: scalable management of flexible loads with dependencies. In: Proceedings of e-Energy, pp. 11:1–11:13 (2016)

  103. Šikšnys, L., Pedersen, T.B.: Solvedb: integrating optimization problem solvers into SQL databases. In: Proceedings of SSDBM, pp. 14:1–14:12 (2016)

  104. Šikšnys, L., Valsomatzis, E., Hose, K., Pedersen, T.B.: Aggregating and disaggregating flexibility objects. TKDE 27(11), 2893–2906 (2015)

    Google Scholar 

  105. Tang, Z., Maclennan, J.: Data Mining with SQL Server 2005. Wiley, New York (2005)

    Google Scholar 

  106. Valsomatzis, E., Pedersen, T.B., Abell, A., Hose, K.: Aggregating energy flexibilities under constraints. In: Proceedings of SmartGridComm, pp. 484–490 (2016)

  107. Van Poucke, S., Thomeer, M., Heath, J., Vukicevic, M.: Are randomized controlled trials the (g) old standard? From clinical intelligence to prescriptive analytics. J. Med. Internet Res. 18(7), e185 (2016)

    Article  Google Scholar 

  108. Vanderbei, R.J.: Linear Programming. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  109. Waller, M.A., Fawcett, S.E.: Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. J. Bus. Logist. 34(2), 77–84 (2013)

    Article  Google Scholar 

  110. Watkins, E.R.: Principles of the business rule approach: Ronald G. Ross, Addison-Wesley information technology series, february 2003, 256pp., price £30.99, ISBN 0-201-78893-4. Int. J. Inf. Manag. 24(2), 196–197 (2004)

  111. Winston, W.L., Goldberg, J.B.: Operations Research: Applications and Algorithms, vol. 3. Thomson/Brooks/Cole, Belmont (2004)

    Google Scholar 

  112. Wu, P.J., Yang, C.K.: The green fleet optimization model for a low-carbon economy: a prescriptive analytics. ICASI 2017, 107–110 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by the MADE-AAU Project, the DiCyPS Project funded by Innovation Fund Denmark, and the GOFLEX Project funded by the EC under the Horizon 2020 Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Frazzetto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frazzetto, D., Nielsen, T.D., Pedersen, T.B. et al. Prescriptive analytics: a survey of emerging trends and technologies. The VLDB Journal 28, 575–595 (2019). https://doi.org/10.1007/s00778-019-00539-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00778-019-00539-y

Keywords

Navigation