Skip to main content
Log in

Cobalt cage complexes as mediators of protein electron transfer

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A selection of cobalt (III)/(II) macrobicyclic ‘sarcophagine’ (sar) cage complexes with N3S3 mixed donor sets but differing in a single apical substituent has been chosen to span a redox potential range of +150 to −150 mV vs the normal hydrogen electrode and thus acts as redox buffers in protein spectroelectrochemistry and redox potentiometry. The cobalt(III) cage complexes are all based on the same parent structure [Co(XMeN3S3sar)]3+, where X, the variable apical substituent, is –NO2, –Cl, –OH, –NH2, or –NMe +3 , and a methyl group occupies the opposite apical position. The X-ray crystal structures of selected members of this series are reported. Changes to the apical substituent X enable the CoIII/II redox potential to be tuned across a range of more than 200 mV by the inductive effects of the functional group. The pH dependence of the redox potential enabled the pK a values of some functional groups to be determined. The complexes were successfully employed as electron transfer mediators in the spectroelectrochemical investigation of a variety of heme proteins.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ORP:

Oxidation–reduction potential

sar:

Sarcophagine

Mb:

Myoglobin

ReFixL:

FixL from Rhizobium etli

Hb:

Hemoglobin

References

  1. Léger C, Bertrand P (2008) Chem Rev 108:2379–2438. doi:10.1021/cr0680742

    Article  PubMed  Google Scholar 

  2. Wang J, Li M, Shi Z, Li N, Gu Z (2002) Anal Chem 74:1993–1997. doi:10.1021/ac010978u

    Article  CAS  PubMed  Google Scholar 

  3. Bernhardt PV (2006) Aust J Chem 59:233–256. doi:10.1071/CH05340

    Article  CAS  Google Scholar 

  4. Bernhardt PV, Chen K, Sharpe PC (2006) J Biol Inorg Chem 11:930–936. doi:10.1007/s00775-006-0148-z

    Article  CAS  PubMed  Google Scholar 

  5. Chen K-I, McEwan AG, Bernhardt PV (2009) J Biol Inorg Chem 14:409–419. doi:10.1007/s00775-008-0458-4

    Article  CAS  PubMed  Google Scholar 

  6. Chen K-I, McEwan AG, Bernhardt PV (2011) J Biol Inorg Chem 16:227–234. doi:10.1007/s00775-010-0719-x

    Article  CAS  PubMed  Google Scholar 

  7. Kalimuthu P, Leimkühler S, Bernhardt PV (2012) J Phys Chem B 116:11600–11607. doi:10.1021/jp307374z

    Article  CAS  PubMed  Google Scholar 

  8. Chen K-I, Challinor VL, Kielmann L, Sharpe PC, De Voss JJ, Kappler U, McEwan AG, Bernhardt PV (2015) J Biol Inorg Chem 20:395–402. doi:10.1007/s00775-014-1215-5

    Article  CAS  PubMed  Google Scholar 

  9. Kalimuthu P, Heider J, Knack D, Bernhardt PV (2015) J Phys Chem B 119:3456–3463. doi:10.1021/jp512562k

    Article  CAS  PubMed  Google Scholar 

  10. Honorio Felício N, Carepo MSP, Paulo, T de F, de França Lopes LG, Sousa EHS, Diógenes ICN, Bernhardt PV (2016) J Inorg Biochem 164:34–41. doi:10.1016/j.jinorgbio.2016.08.009

    Article  PubMed  Google Scholar 

  11. Gahan LR, Harrowfield JM (2015) Polyhedron 94:1–51. doi:10.1016/j.poly.2015.03.036

    Article  CAS  Google Scholar 

  12. Behm CA, Boreham PFL, Creaser II, Daszkiewicz BK, Maddalena DJ, Sargeson AM, Snowdon GM (1995) Aust J Chem 48:1009. doi:10.1071/CH9951009

    Article  CAS  Google Scholar 

  13. Sargeson AM (1996) Coord Chem Rev 151:89–114. doi:10.1016/S0010-8545(96)90197-6

    Article  CAS  Google Scholar 

  14. Di Bartolo NM, Sargeson AM, Donlevy TM, Smith SV (2001) J Chem Soc Dalton Trans 2303–2309. doi:10.1039/b103242a

  15. Geue RJ, Hambley TW, Harrowfield JM, Sargeson AM, Snow MR (1984) J Am Chem Soc 106:5478–5488. doi:10.1021/ja00331a016

    Article  CAS  Google Scholar 

  16. Geue RJ, Hendry AJ, Sargeson AM (1989) J Chem Soc Chem Commun 1646–1647. 10.1039/C39890001646

  17. Lawrance GA, Lay PA, Sargeson AM (1990) Inorg Chem 29:4808–4816. doi:10.1021/ic00348a042

    Article  CAS  Google Scholar 

  18. Bottomley GA, Clark IJ, Creaser II, Engelhardt LM, Geue RJ, Hagen KS, Harrowfield JM, Lawrance GA, Lay PA, Sargeson AM, See AJ, Skelton BW, White AH, Wilner FR (1994) Aust J Chem 47:143. doi:10.1071/CH9940143

    Article  CAS  Google Scholar 

  19. Bruce JI, Lawrance GA, Hambley TW, Stranger R (1993) Inorg Chem 32:5997–6002. doi:10.1021/ic00078a016

    Article  CAS  Google Scholar 

  20. Donlevy TM, Gahan LR, Hambley TW, Stranger R (1992) Inorg Chem 31:4376–4382. doi:10.1021/ic00047a027

    Article  CAS  Google Scholar 

  21. Gahan LR, Hambley TW, Sargeson AM, Snow MR (1982) Inorg Chem 21:2699–2706. doi:10.1021/ic00137a033

    Article  CAS  Google Scholar 

  22. Gahan LR, Lawrance GA, Sargeson AM (1984) Inorg Chem 23:4369–4376. doi:10.1021/ic00193a052

    Article  CAS  Google Scholar 

  23. Armarego WLF, Chai CLL (2009) Purification of laboratory chemicals, 6th edn. Elsevier, Oxford, UK, p 136

    Google Scholar 

  24. Doering WVE, Levy LK (1955) J Am Chem Soc 77:509. doi:10.1021/ja01608a001

    Article  CAS  Google Scholar 

  25. Lay PA, Lydon J, Mau AWH, Osvath P, Sargeson AM, Sasse WHF (1993) Aust J Chem 46:641. doi:10.1071/CH9930641

    Article  CAS  Google Scholar 

  26. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New York, USA

    Google Scholar 

  27. King P, Maeder M (2014) ReactLab Redox, a program for the analysis of Redox titration measurements. JPlus Consulting Pty Ltd, Perth, Australia

    Google Scholar 

  28. Sheldrick GM (2008) Acta Cryst Sect A 61:112–122. doi:10.1107/S0108767307043930

    Article  Google Scholar 

  29. Farrugia LJ (1999) J Appl Crystallogr 32:837. doi:10.1107/S0021889899006020

    Article  CAS  Google Scholar 

  30. Farrugia LJ (1997) J Appl Crystallogr 30:565. doi:10.1107/S0021889897003117

    Article  CAS  Google Scholar 

  31. Osvath P, Sargeson AM, McAuley A, Mendelez RE, Subramanian S, Zaworotko MJ, Broge L (1999) Inorg Chem 38:3634–3643. doi:10.1021/ic981380g

    Article  CAS  PubMed  Google Scholar 

  32. Bernhardt PV, Bygott AM, Geue RJ, Hendry AJ, Korybut-Daszkiewicz BR, Lay PL, Pladziewicz JR, Sargeson AM, Willis AC (1994) Inorg Chem 33:4553–4561. doi:10.1021/ic00098a023

    Article  CAS  Google Scholar 

  33. Harrowfield J (2006) Supramol Chem 18:125–136. doi:10.1080/10610270600552533

    Article  CAS  Google Scholar 

  34. Bernhardt PV, Kim Y, Sujandi (2006) Aust J Chem 59:783–790. doi:10.1071/CH06257

    Article  CAS  Google Scholar 

  35. Hambley TW, Snow MR (1986) Inorg Chem 25:1378–1382. doi:10.1021/ic00229a017

    Article  CAS  Google Scholar 

  36. Creaser II, Geue RJ, Harrowfield JM, Herlt AJ, Sargeson AM, Snow MR, Springborg J (1982) J Am Chem Soc 104:6016–6025. doi:10.1021/ja00386a030

    Article  CAS  Google Scholar 

  37. Clark WM (1960) The oxidation-reduction potentials of organic systems. The Williams and Wilkins Company, Baltimore, USA

    Google Scholar 

  38. Sousa EHS, Tuckerman JR, Gondim ACS, Gonzalez G, Gilles-Gonzalez MA (2013) Biochemistry 52:456–465. doi:10.1021/bi300991r

    Article  CAS  PubMed  Google Scholar 

  39. Scheller FW, Bistolas N, Liu S, Jänchen M, Katterle M, Wollenberger U (2005) Adv Colloid Interface Sci 116:111–120. doi:10.1016/j.cis.2005.05.006

    Article  CAS  PubMed  Google Scholar 

  40. Evans SV, Brayer GD (1988) J Biol Chem 263:4263

    CAS  PubMed  Google Scholar 

  41. Spiro TG, Strekas TC (1974) J Am Chem Soc 96:338–345. doi:10.1021/ja00809a004

    Article  CAS  PubMed  Google Scholar 

  42. Eaton WA, Hanson LK, Stephens PJ, Sutherland JC, Dunn JBR (1978) J Am Chem Soc 100:4991–5003. doi:10.1021/ja00484a013

    Article  CAS  Google Scholar 

  43. Taylor J, Morgan VE (1942) J Biol Chem 144:15–20

    CAS  Google Scholar 

  44. Song S, Dong S (1988) J Electroanal Chem Interfac Electrochem 253:337–346. doi:10.1016/0022-0728(88)87070-0

    Article  Google Scholar 

Download references

Acknowledgements

PVB acknowledges financial support from the Australian Research Council (DP150103345).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul V. Bernhardt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F.M.C., Bernhardt, P.V. Cobalt cage complexes as mediators of protein electron transfer. J Biol Inorg Chem 22, 775–788 (2017). https://doi.org/10.1007/s00775-016-1427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1427-y

Keywords

Navigation