Skip to main content

Iron-sulfur clusters—new features in enzymes and synthetic models

  • Conference paper
ICAME 2011

Abstract

Mössbauer spectroscopy is very important for the characterization of iron sulfur clusters in biological and synthetic molecules. The electric and magnetic hyperfine parameters obtained for 57Fe provide valuable information about the electronic structure of the different iron sites occurring in Fe:S clusters. Although known since more than four decades, research in this field is very active, revealing unexpected functions, structures and redox states. In this overview, new aspects of double exchange and vibronic coupling in a structurally well-characterized two-iron model compound are discussed, the electronic structure of extremely reduced clusters with all iron in ferrous or even in iron(I) state is elucidated, and an exciting new type of cubane cluster occurring in oxygen-insensitive hydrogenases is presented. The latter cluster involves structural changes during function and it supports more than one redox transition, which may be essential for oxygen protection of the enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beinert, H., Holm, R.H., Münck, E.: Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277, 653–659 (1997)

    Article  Google Scholar 

  2. Beinert, H.: Iron-sulfur proteins: ancient structures, still full of surprises. J. Biol. Inorg. Chem. 5(1), 2–15 (2000)

    Article  Google Scholar 

  3. Rees, D.C.: Great metallclusters in enzymology. Ann. Rev. Biochem. 71, 221–246 (2002)

    Article  Google Scholar 

  4. Rees, D.C., Howard, J.B.: The interface between the biological and inorganic worlds: iron-sulfur metalloclusters. Science 300(5621), 929–931 (2003). doi:10.1126/science.1083075

    Article  ADS  Google Scholar 

  5. Huber, C., Wächtershäuser, G.: Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 276(5310), 245–247 (1997). doi:10.1126/science.276.5310.245

    Article  Google Scholar 

  6. Rao, V.P., Holm, R.H.: Synthetic analogues of the active sites of iron-sulfur proteins. Chem. Rev. 104(2), 527–560 (2003). doi:10.1021/cr020615+

    Google Scholar 

  7. Johnson, D.C., Dean, D.R., Smith, A.D., Johnson, M.K.: Structure, function, and formation of biological iron-sulfur clusters. Ann. Rev. Biochem. 74(1), 247–281 (2005). doi:10.1146/annurev.biochem.74.082803.133518

    Article  Google Scholar 

  8. Dos Santos, P.C., Dean, D.R.: Bioinorganic chemistry—electrons in Fe-S protein assembly. Nat. Chem. Biol. 6(10), 700–701 (2010). doi:10.1038/nchembio.438

    Article  Google Scholar 

  9. Lill, R.: Function and biogenesis of iron-sulphur proteins. Nature 460(7257), 831–838 (2009)

    Article  ADS  Google Scholar 

  10. Sheftel, A., Stehling, O., Lill, R.: Iron-sulfur proteins in health and disease. Trends Endocrinol. Metab. 21(5), 302–314 (2010)

    Article  Google Scholar 

  11. Solomon, E.I., Xie, X., Dey, A.: Mixed valent sites in biological electron transfer. Chem. Soc. Rev. 37(4), 623–638 (2008)

    Article  Google Scholar 

  12. Zener, C.: Interaction between the d-shells in the transition metals. 2. Ferromagnetic compounds of manganese with Perovskite structure. Phys. Rev. 82(3), 403–405 (1951)

    Article  ADS  Google Scholar 

  13. Anderson, P.W., Hasegawa, H.: Considerations on double exchange. Phys. Rev. 100(2), 675–681 (1955)

    Article  ADS  Google Scholar 

  14. Papaefthymiou, V., Girerd, J.-J., Moura, I., Moura, J.J.G., Münck, E.: Mössbauer study of D. gigas ferredoxin II and spin coupling model for the Fe3S4 cluster with valence delocalization. J. Am. Chem. Soc. 109(15), 4703–4710 (1987)

    Article  Google Scholar 

  15. Noodleman, L., Case, D.A., Mouesca, J.M., Lamotte, B.: Valence electron delocalization in polynuclear iron-sulfur clusters. J. Biol. Inorg. Chem. 1(2), 177–182 (1996)

    Article  Google Scholar 

  16. Schulz, C.E., Debrunner, P.G.: Rubredoxin. J. Phys. Coll. 37(C6), 153–158 (1976)

    Google Scholar 

  17. Münck, E., Debrunner, P.G., Tsibris, J.C.M., Gunsalus, I.C.: Mössbauer parameters of putidaredoxin and its selenium analog. Biochemistry 11(5), 855–863 (1972)

    Article  Google Scholar 

  18. Kent, T.A., Huynh, B.h., Münck, E.: Iron-sulfur proteins: spin-coupling model for three-iron cluster. Proc. Natl. Acad. Sci. U. S. A. 77(11), 6574–6576 (1980)

    Article  ADS  Google Scholar 

  19. Middleton, P., Dickson, D.P.E., Johnson, C.E., Rush, J.D.: Interpretation of the Mössbauer spectra of Four-Iron Ferredoxin from Bacillus stearothermophilis. Eur. J. Biochem. 88, 135–141 (1978)

    Article  Google Scholar 

  20. Middleton, P., Dickson, D.P.E., Charles, E.J., Rush, J.D.: Interpretation of the Mössbauer spectra of the high-potential iron protein from chromatium. Eur. J. Biochem. 104(1), 289–296 (1980)

    Article  Google Scholar 

  21. Gütlich, P., Bill, E., Trautwein, A.X.: Mössbauer spectroscopy and transition metal chemistry. Springer, Berlin Heidelberg (2011)

    Book  Google Scholar 

  22. Cammack, R.: Iron-sulfur clusters in enzymes: themes and variations. In: Cammack, R. (ed.) Iron-Sulfur Proteins, vol. 38. Advances in Inorganic Chemistry, pp. 281–323. Academic Press, San Diego (1992)

    Google Scholar 

  23. Schünemann, V., Winkler, H.: Structure and dynamics of biomolecules studied by Mössbauer spectroscopy. Rep. Prog. Phys. 63(3), 263–353 (2000)

    Article  ADS  Google Scholar 

  24. Mouesca, J.-M., Lamotte, B.: Iron-sulfur clusters and their electronic and magnetic properties. Coord. Chem. Rev. 178–180, 1573–1614 (1998)

    Article  Google Scholar 

  25. Albers, A., Demeshko, S., Dechert, S., Bill, E., Bothe, E., Meyer, F.: The complete characterization of a reduced biomimetic [2Fe-2S] cluster. Angew. Chem. Int. Ed. 50(39), 9191–9194 (2011)

    Article  Google Scholar 

  26. Ballmann, J., Albers, A., Demeshko, S., Dechert, S., Bill, E., Bothe, E., Ryde, U., Meyer, F.: A synthetic analogue of rieske-type [2Fe-2S] clusters. Angew. Chem. Int. Ed. 47(49), 9537–9541 (2008)

    Article  Google Scholar 

  27. Mascharak, P.K., Papaefthymiou, G.C., Frankel, R.B., Holm, R.H.: Evidence for the localized iron(III)/iron(II) oxidation state configuration as an intrinsic property of [Fe2S2(SR)4]3- clusters. J. Am. Chem. Soc. 103(20), 6110–6116 (1981). doi:10.1021/ja00410a021

    Article  Google Scholar 

  28. Beardwood, P., Gibson, J.F.: Iron-sulfur dimers with benzimidazolate-thiolate, -phenolate or bis(benzimidazolate) terminal chelating ligands. Models for Rieske-type proteins. J. Chem. Soc. Dalton Trans. 16, 2457–2466 (1992)

    Article  Google Scholar 

  29. Ding, X.Q., Bill, E., Trautwein, A.X., Winkler, H., Kostikas, A., Papaefthymiou, V., Simpoulos, A., Beardwood, P., Gibson, J.F.: Exchange interactions, charge delocalization and spin relaxation in a mixed-valence diiron complex studied by Mössbauer-spectroscopy. J. Chem. Phys. 99(9), 6421–6428 (1993)

    Article  ADS  Google Scholar 

  30. Hoggins, J.T., Steinfink, H.: Empirical bonding relationships in metal-iron-sulfide compounds. Inorg. Chem. 15(7), 1682–1685 (1976)

    Article  Google Scholar 

  31. Piepho, S.B.: Vibronic coupling for calculations of Mixed-Valence Line-Shapes—the interdependence of vibronic and MO effects. J. Am. Chem. Soc. 110(19), 6319–6326 (1988)

    Article  Google Scholar 

  32. Piepho, S.B., Krausz, E.R., Schatz, P.N.: Vibronic coupling for calculation of mixed-valence absorption profiles. J. Am. Chem. Soc. 100(10), 2996–3005 (1978)

    Article  Google Scholar 

  33. Girerd, J.J.: Electron transfer between magnetic ions in mixed valence binuclear systems. J. Chem. Phys. 79, 1766–1775 (1983)

    Article  ADS  Google Scholar 

  34. Blondin, G., Girerd, J.-J.: Interplay of electron exchange and electron transfer in metal polynuclear complexes in proteins or chemical models. Chem. Rev. 90, 1359 (1990)

    Article  Google Scholar 

  35. Bominaar, E.L., Borshch, S.A., Girerd, J.-J.: Double-exchange and vibronic coupling in mixed-valence systems. Electronic structure of [Fe4S4]3+ clusters in high-potential iron protein and related models. J. Am. Chem. Soc. 116, 5362–5372 (1994)

    Article  Google Scholar 

  36. Bominaar, E.L., Hu, Z., Münck, E., Girerd, J.-J., Borshch, S.: Double exchange and vibronic coupling in mixed-valence systems. Elelctonic structure of exchange-coupled siroheme-[Fe4S4]2+ chromophore in oxidized E. Coli sulfite reductase. J. Am. Chem. Soc. 117(26), 6976–6989 (1995)

    Article  Google Scholar 

  37. Münck, E., Papaefthymiou, V., Surerus, K.K., Girerd, J.J.: Double exchange in reduced Fe3S3 clusters and novel clusters with MFe3S4 cores. Acs Symposium Series 372, 302–325 (1988)

    Article  Google Scholar 

  38. Orio, M., Mouesca, J.M.: Variation of average g values and effective exchange coupling constants among 2Fe-2S clusters: a density functional theory study of the impact of localization (trapping forces) versus delocalization (double-exchange) as competing factors. Inorg. Chem. 47(12), 5394–5416 (2008). doi:10.1021/ic701730h

    Article  Google Scholar 

  39. Anxolabehere-Mallart, E., Glaser, T., Frank, P., Aliverti, A., Zanetti, G., Hedman, B., Hodgson, K.O., Solomon, E.I.: Sulfur K-edge X-ray absorption spectroscopy of 2Fe-2S ferredoxin: covalency of the oxidized and reduced 2Fe forms and comparison to model complexes. J. Am. Chem. Soc. 123(23), 5444–5452 (2001)

    Article  Google Scholar 

  40. Glaser, T., Rose, K., Shadle, S.E., Hedman, B., Hodgson, K.O., Solomon, E.I.: S K-edge X-ray absorption studies of tetranuclear iron-sulfur clusters: μ-sulfide bonding and its contribution to electron delocalization. J. Am. Chem. Soc. 123(3), 442–454 (2000). doi:10.1021/ja002183v

    Article  Google Scholar 

  41. Angove, H.C., Yoo, S.J., Burgess, B.K., Münck, E.: Mössbauer and EPR evidence for an all-ferrous Fe4S4 cluster with S = 4 in the Fe protein of nitrogenase. J. Am. Chem. Soc. 119(37), 8730–8731 (1997)

    Article  Google Scholar 

  42. Musgrave, K.B., Angove, H.C., Burgess, B.K., Hedman, B., Hodgson, K.O.: All-ferrous titanium(III) citrate reduced Fe protein of nitrogenase: an XAS study of electronic and metrical structure. J. Am. Chem. Soc. 120(21), 5325–5326 (1998)

    Article  Google Scholar 

  43. Angove, H.C., Yoo, S.J., Münck, E., Burgess, B.K.: An all-ferrous state of the Fe protein of nitrogenase—interaction with nucleotides and electron transfer to the MoFe protein. J. Biol. Chem. 273(41), 26330–26337 (1998)

    Article  Google Scholar 

  44. Yoo, S.J., Angove, H.C., Burgess, B.K., Hendrich, M.P., Münck, E.: Mössbauer and integer-spin EPR studies and spin-coupling analysis of the 4Fe–4S (0) cluster of the Fe protein from Azotobacter vinelandii nitrogenase. J. Am. Chem. Soc. 121(11), 2534–2545 (1999)

    Article  Google Scholar 

  45. Angove, H.C., Yoo, S.J., Munck, E., Burgess, B.K.: Role(s) of the P-clusters in nitrogenase catalysis. J. Inorg. Biochem. 74(1–4), 65–65 (1999)

    Google Scholar 

  46. Surerus, K.K., Hendrich, M.P., Christie, P.D., Rottgardt, D., Orme-Johnson, W.H., Münck, E.: Mössbauer and integer-spin EPR of the oxidized P-clusters of nitrogenase—Pox is a non-Kramers system with a nearly degenerate ground doublet. J. Am. Chem. Soc. 114(22), 8579–8590 (1992). doi:10.1021/ja00048a034

    Article  Google Scholar 

  47. Hans, M., Buckel, W., Bill, E.: Spectroscopic evidence for an all-ferrous [4Fe–4S](0) cluster in the superreduced activator of 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. J. Biol. Inorg. Chem. 13(4), 563–574 (2008)

    Article  Google Scholar 

  48. Leggate, E.J., Bill, E., Essigke, T., Ullmann, G.M., Hirst, J.: Formation and characterization of an all-ferrous Rieske cluster and stabilization of the [2Fe–2S]0 core by protonation. Proc. Natl. Acad. Sci. U. S. A. 101(30), 10913–10918 (2004)

    Article  ADS  Google Scholar 

  49. Clark, M.M., Stubbert, B.D., Brennessel, W.W., Bill, E., Holland, P.L.: Synthesis, structure, and spectroscopy of an iron(I)-sulfide complex. Inorg. Chem (2011, accepted)

    Google Scholar 

  50. Stoian, S.A., Yu, Y., Smith, J.M., Holland, P.L., Bominaar, E.L., Münck, E.: Mössbauer, electron paramagnetic resonance, and crystallographic characterization of a high-spin Fe(I) diketiminate complex with orbital degeneracy. Inorg. Chem. 44(14), 4915–4922 (2005)

    Article  Google Scholar 

  51. Brugna-Guiral, M., Tron, P., Nitschke, W., Stetter, K.O., Burlat, B., Guigliarelli, B., Bruschi, M., Giudici-Orticoni, M.T.: NiFe hydrogenases from the hyperthermophilic bacterium Aquifex aeolicus: properties, function, and phylogenetics. Extremophiles 7(2), 145–157 (2003). doi:10.1007/s00792-002-0306-3

    Google Scholar 

  52. Pandelia, M.-E., Fourmond, V., Tron-Infossi, P., Lojou, E., Bertrand, P., Leger, C., Giudici-Orticoni, M.-T., Lubitz, W.: Membrane-bound hydrogenase I from the hyperthermophilic bacterium aquifex aeolicus: enzyme activation, redox intermediates and oxygen tolerance. J. Am. Chem. Soc. 132(20), 6991–7004 (2010). doi:10.1021/ja910838d

    Article  Google Scholar 

  53. Fontecilla-Camps, J.C., Volbeda, A., Cavazza, C., Nicolet, Y.: Structure/function relationships of NiFe- and FeFe-hydrogenases. Chem. Rev. 107(10), 4273–4303 (2007). doi:10.1021/cr050195z

    Article  Google Scholar 

  54. Surerus, K.K., Chen, M., Vanderzwaan, J.W., Rusnak, F.M., Kolk, M., Duin, E.C., Albracht, S.P.J., Münck, E.: Further characterization of the spin coupling observed in oxidized hydrogenase from chromatium-vinosum—a Mössbauer and multifrequency EPR study. Biochemistry 33(16), 4980–4993 (1994)

    Article  Google Scholar 

  55. Pandelia, M.-E., Nitschke, W., Infossi, P., Giudici-Orticoni, M.-T., Bill, E., Lubitz, W.: Characterization of a unique FeS cluster in the electron transfer chain of the oxygen tolerant NiFe hydrogenase from Aquifex aeolicus. Proc. Natl. Acad. Sci. 108(15), 6097–6102 (2011). doi:10.1073/pnas.1100610108

    Article  ADS  Google Scholar 

  56. Pandelia, M.-E., Nitschke, W., Infossi, P., Giudici-Orticoni, M.-T., Bill, E., Lubitz, W. (2012, to be published)

    Google Scholar 

  57. Shomura, Y., Yoon, K.-S., Nishihara, H., Higuchi, Y.: Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase. Nature advance online publication (2011). doi:http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature10504.html#supplementary-information

  58. Fritsch, J., Scheerer, P., Frielingsdorf, S., Kroschinsky, S., Friedrich, B., Lenz, O., Spahn, C.M.T.: The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature advance online publication (2011). doi:http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature10505.html#supplementary-information

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Bill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this paper

Cite this paper

Bill, E. (2013). Iron-sulfur clusters—new features in enzymes and synthetic models. In: Yoshida, Y. (eds) ICAME 2011. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4762-3_48

Download citation

Publish with us

Policies and ethics