Skip to main content
Log in

Association studies to transporting proteins of fac-ReI(CO)3(pterin)(H2O) complex

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A new synthetic route to acquire the water soluble complex fac-ReI(CO)3(pterin)(H2O) was carried out in aqueous solution. The complex has been obtained with success via the fac-[ReI(CO)3(H2O)3]Cl precursor complex. ReI(CO)3(pterin)(H2O) has been found to bind strongly with bovine and human serum albumins (BSA and HSA) with intrinsic-binding constants, Kb, of 6.5 × 105 M−1 and 5.6 × 105 M−1 at 310 K, respectively. The interactions of serum albumins with ReI(CO)3(pterin)(H2O) were evaluated employing UV–vis fluorescence and absorption spectroscopy and circular dichroism. The results suggest that the serum albumins-ReI(CO)3(pterin)(H2O) interactions occurred in the domain IIA-binding pocket without loss of helical stability of the proteins. The comparison of the fluorescence quenching of BSA and HSA due to the binding to the Re(I) complex suggested that local interaction around the Trp 214 residue had taken place. The analysis of the thermodynamic parameters ΔG0, ΔH0, and ΔS0 indicated that the hydrophobic interactions played a major role in both HSA-Re(I) and BSA-Re(I) association processes. All these experimental results suggest that these proteins can be considered as good carriers for transportation of ReI(CO)3(pterin)(H2O) complex. This is of significant importance in relation to the use of this Re(I) complex in several biomedical fields, such as photodynamic therapy and radiopharmacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leonidova A, Gasser G (2014) Underestimated potential of organometallic rhenium complexes as anticancer agents. ACS Chem Biol 9:2180–2193. doi:10.1021/cb500528c

    Article  CAS  PubMed  Google Scholar 

  2. Navarro M, Castro W, Biot C (2012) Bioorganometallic compounds with antimalarial targets: inhibiting hemozoin formation. Organometallics 31:5715–5727. doi:10.1021/om300296n

    Article  CAS  Google Scholar 

  3. Giordano PJ, Fredricks SM, Wrighton MS, Morse DL (1978) Simultaneous multiple emissions from fac-XRe(C0)3(3-benzoylpyridine)2: n-r* intraligand and charge-transfer emission at low temperature. J Am Chem Soc 100:2257. doi:10.1021/ja00475a061

    Article  CAS  Google Scholar 

  4. Kumar A, Sun S, Lees AJ (2010) Photophysics and photochemistry of organometallic rhenium diimine complexes. Top Organomet Chem. doi:10.1007/3418

    Google Scholar 

  5. Ragone F, Martinez Saavedra HH, David Gara PM et al (2013) Photosensitized generation of singlet oxygen from Re(I) complexes: a photophysical study using LIOAS and luminescence techniques. J Phys Chem A 117:4428–4435. doi:10.1021/jp402550g

    Article  CAS  PubMed  Google Scholar 

  6. Ruiz GT, Ferraudi G, Wolcan E, Feliz MR (2010) On the elusive, non-emissive yet reactive, upper excited states of [(4,40-bpy)ReI(CO)3(dppz)]PF6 (dppz = dipyridil[3,2-a:2030-c]phenazine). Inorg Chem Acta. doi:10.1016/j.ica.2010.01.033

    Google Scholar 

  7. Lo KK-W, Choi AW-T, Law WH-T (2012) Applications of luminescent inorganic and organometallic transition metal complexes as biomolecular and cellular probes. Dalt Trans 41:6021. doi:10.1039/c2dt11892k

    Article  CAS  Google Scholar 

  8. Lo KKW (2015) Luminescent rhenium(I) and iridium(III) polypyridine complexes as biological probes, imaging reagents, and photocytotoxic agents. Acc Chem Res 48:2985–2995. doi:10.1021/acs.accounts.5b00211

    Article  CAS  PubMed  Google Scholar 

  9. Morais GR, Paulo A, Santos I (2012) Organometallic complexes for SPECT imaging and/or radionuclide therapy. Organometallics 31:5693–5714. doi:10.1021/om300501d

    Article  CAS  Google Scholar 

  10. Mjos KD, Orvig C (2014) Metallodrugs in medicinal inorganic chemistry. Chem Rev 114:4540–4563. doi:10.1021/cr400460s

    Article  CAS  PubMed  Google Scholar 

  11. Peters T (1985) Serum albumin. Adv Protein Chem 37:161–245. doi:10.1016/S0065-3233(08)60065-0

    Article  CAS  PubMed  Google Scholar 

  12. Bertucci C, Domenici E (2002) Reversible and covalent binding of drugs to human serum albumin: methodological approaches and physiological relevance. Curr Med Chem 9:1463–1481

    Article  CAS  PubMed  Google Scholar 

  13. Deepa S, Mishra AK (2005) Fluorescence spectroscopic study of serum albumin-bromadiolone interaction: fluorimetric determination of bromadiolone. J Pharm Biomed Anal 38:556–563. doi:10.1016/j.jpba.2005.01.023

    Article  CAS  PubMed  Google Scholar 

  14. Xie MX, Xu XY, Wang YD (2005) Interaction between hesperetin and human serum albumin revealed by spectroscopic methods. Biochim Biophys Acta Gen Subj 1724:215–224. doi:10.1016/j.bbagen.2005.04.009

    Article  CAS  Google Scholar 

  15. Steinhardt J, Krijn J, Leidy JG (1971) Differences between bovine and human serum albumins: binding isotherms, optical rotatory dispersion, viscosity, hydrogen ion titration, and fluorescence effects. Biochemistry 10:4005–4015. doi:10.1021/bi00798a001

    Article  CAS  PubMed  Google Scholar 

  16. Carter DC, Ho JX (1994) Structure of serum albumins. Adv Protein Chem 45:153–203. doi:10.1016/S0065-3233(08)60640-3

    Article  CAS  PubMed  Google Scholar 

  17. Bhuvaneswari J, Mareeswaran PM, Anandababu K, Rajagopal S (2014) The switching of a Rhenium(I) complex from turn-off to turn-on sensor system through protein binding. RSC Adv 4:34659. doi:10.1039/C4RA05464D

    Article  CAS  Google Scholar 

  18. Bhuvaneswari J, Fathima AK, Rajagopal S (2012) Rhenium(I)-based fluorescence resonance energy transfer probe for conformational changes of bovine serum albumin. J Photochem Photobiol A Chem 227:38–44. doi:10.1016/j.jphotochem.2011.10.022

    Article  CAS  Google Scholar 

  19. Bhuvaneswari J, Mareeswaran PM, Shanmugasundaram S, Rajagopal S (2011) Protein binding studies of luminescent rhenium(I) diimine complexes. Inorganica Chim Acta 375:205–212. doi:10.1016/j.ica.2011.05.009

    Article  CAS  Google Scholar 

  20. Ragone F, Ruiz GT, Piro OE et al (2012) Water-soluble (Pterin)rhenium(I) complex: synthesis, structural characterization, and two reversible protonation-deprotonation behavior in aqueous solutions. Eur J Inorg Chem 2012:4801–4810. doi:10.1002/ejic.201200681

    Article  CAS  Google Scholar 

  21. Ruiz GT, Juliarena MP, Lezna RO et al (2007) Intercalation of fac-[(4,4′-bpy)ReI(CO)3(dppz)] + , dppz = dipyridyl[3,2-a:2′3′-c]phenazine, in polynucleotides. On the UV-vis photophysics of the Re(I) intercalator and the redox reactions with pulse radiolysis-generated radicals. Dalton Trans 3:2020–2029. doi:10.1039/b614970g

    Article  Google Scholar 

  22. Toneatto J, Garcia PF, Argüello Ga (2011) Advances on the interaction of polypyridyl Cr(III) complexes with transporting proteins and its potential relevance in photodynamic therapy. J Inorg Biochem 105:1299–1305. doi:10.1016/j.jinorgbio.2011.07.013

    Article  CAS  PubMed  Google Scholar 

  23. Lakowicz JR (2006) Principles of Fluorescence Spectroscopy, 3rd edn. doi: 10.1007/978-0-387-46312-4

  24. Ryan DK, Weber JH (1982) Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid. Anal Chem 54:986–990. doi:10.1021/ac00243a033

    Article  CAS  Google Scholar 

  25. Van De Weert M, Stella L (2011) Fluorescence quenching and ligand binding: a critical discussion of a popular methodology. J Mol Struct 998:145–150. doi:10.1016/j.molstruc.2011.05.023

    Google Scholar 

  26. Li Y, He W, Liu J et al (2005) Binding of the bioactive component Jatrorrhizine to human serum albumin. Biochim Biophys Acta Gen Subj 1722:15–21. doi:10.1016/j.bbagen.2004.11.006

    Article  CAS  Google Scholar 

  27. Molina-Bolívar JA, Galisteo-González F, Carnero Ruiz C et al (2015) Interaction between the anti-cancer drug diacetyl maslinic acid and bovine serum albumin: a biophysical study. J Mol Liq 208:304–313. doi:10.1016/j.molliq.2015.04.050

    Article  Google Scholar 

  28. Woody RW (1996) Circular dichroism and the conformational analysis of biomolecules. doi: 10.1007/978-1-4757-2508-7_2

  29. Sun C, Yang J, Wu X et al (2005) Unfolding and refolding of bovine serum albumin induced by cetylpyridinium bromide. Biophys J 88:3518–3524. doi:10.1529/biophysj.104.051516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Toneatto J, Argüello Ga (2011) New advances in the study on the interaction of [Cr(phen)2(dppz)]3+ complex with biological models; association to transporting proteins. J Inorg Biochem 105:645–651. doi:10.1016/j.jinorgbio.2010.10.018

    Article  CAS  PubMed  Google Scholar 

  31. Lazarova N, James S, Babich J, Zubieta J (2004) A convenient synthesis, chemical characterization and reactivity of [Re(CO)3(H2O)3]Br: the crystal and molecular structure of [Re(CO)3(CH3CN)2Br]. Inorg Chem Commun 7:1023–1026. doi:10.1016/j.inoche.2004.07.006

    Article  CAS  Google Scholar 

  32. Ragone F (2015) Estudios fotoquimicos y fotofisicos en complejos tricarbonilicos de Renio(I) y su interaccion con biopólimeros. PhD Thesis UNLP

  33. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102. doi:10.1021/bi00514a017

    Article  CAS  PubMed  Google Scholar 

  34. Mallick a, Haldar B, Chattopadhyay N (2005) Spectroscopic investigation on the interaction of ICT probe 3-acetyl-4-oxo-6,7-dihydro-12H indolo- 2,3-a quinolizine with serum albumins. J Phys Chem B 109:14683–14690. doi:10.1021/jp051367z

    Article  CAS  PubMed  Google Scholar 

  35. Liu J, Tian J, He W et al (2004) Spectrofluorimetric study of the binding of daphnetin to bovine serum albumin. J Pharm Biomed Anal 35:671–677. doi:10.1016/j.jpba.2004.02.010

    Article  CAS  PubMed  Google Scholar 

  36. Busetti A, Soncin M, Jori G, Rodgers M (1999) High efficiency of benzoporphyrin derivative in the photodynamic therapy of pigmented malignant melanoma. Br J Cancer 79:821–824. doi:10.1038/sj.bjc.6690131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Narazaki R, Harada K, Sugii A, Otagiri M (1997) Kinetic analysis of the covalent binding of captopril to human serum albumin. J Pharm Sci 86:215–219. doi:10.1021/js960234+

    Article  CAS  PubMed  Google Scholar 

  38. Thomas AH, Lorente C, Roitman K et al (2013) Photosensitization of bovine serum albumin by pterin: a mechanistic study. J Photochem Photobiol B Biol 120:52–58. doi:10.1016/j.jphotobiol.2013.01.008

    Article  CAS  Google Scholar 

  39. Alberto R, Schibli R, Waibel R (1999) Basic aqueous chemistry of +(M=Re, Tc) directed towards radiopharmaceutical application. Coord Chem Rev 192:901–919

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CONICET (PIP 0389), ANPCyT (PICT 2010-1435), and Universidad Nacional de La Plata (UNLP 11/X611) of Argentina. FR and GTR thank Dr. Croce (INIFTA, UNLP, Argentina) for their assistance in FTIR measurements. HHMS thanks to CCT-La Plata and CCT-Córdoba from CONICET for his Fellowship in the Funding Program to Short Visit to INFIQC. FR, HHMS, and PFG thank CONICET for research scholarships. EW, GAA, and GTR are Research Members of CONICET (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo T Ruiz.

Additional information

F. Ragone, H. H. M. Saavedra, P. F. García contributed equally to the experimental part of this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragone, F., Saavedra, H.H.M., García, P.F. et al. Association studies to transporting proteins of fac-ReI(CO)3(pterin)(H2O) complex. J Biol Inorg Chem 22, 99–108 (2017). https://doi.org/10.1007/s00775-016-1410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1410-7

Keywords

Navigation