Skip to main content

Advertisement

Log in

Theoretical exploration of the mechanism of formylmethanofuran dehydrogenase: the first reductive step in CO2 fixation by methanogens

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A theoretical exploration of the possible active site models of methanofuran dehydrogenase reveals that the free energy of the reduction of the carbamate group is substantially negative and is driven by the electron withdrawing amide group next to the carbonyl carbon. Comparison of the computed transition state energies with the experimental energy barrier indicates that the active site is likely to have an axial oxo and equatorial hydrosulfide ligand, the substrate is likely to be protonated and a second-sphere hydrogen-bonding interaction with the axial ligand can, substantially, lower the barrier of this reaction which involves reduction of the carbonyl center of the a carbamate to form an N-formyl group via a hydride shift from a Mo(IV) center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Megonigal JP, Whalen SC, Tissue DT, Bovard BD, Allen AS, Albert DB (1999) In: Soil Science Society of America: Madison, WI 63: 3

  2. Catling DC, Zahnle KJ, McKay CP (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293(5531):839–843

    Article  CAS  PubMed  Google Scholar 

  3. Schwörer B, Thauer RK (1991) Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria. Arch Microbiol 155(5):459–465

    Article  Google Scholar 

  4. Rolfe RD, Hentges DJ, Campbell BJ, Barrett JT (1978) Factors related to the oxygen tolerance of anaerobic bacteria. Appl Environ Microbiol 36(2):306–313

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Majumdar A, Sarkar S (2011) Bioinorganic chemistry of molybdenum and tungsten enzymes: a structural-functional modeling approach. Coord Chem Rev 255(9–10):1039–1054

    Article  CAS  Google Scholar 

  6. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113(8):6621–6658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thauer RK (2012) The Wolfe cycle comes full circle. Proc Natl Acad Sci 109:15084–15085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmitz RA, Albracht SPJ, Thauer RK (1992) A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. Eur J Biochem 209(3):1013–1018

    Article  CAS  PubMed  Google Scholar 

  9. Rebelo J, Macieira S, Dias JM, Huber R, Ascenso CS, Rusnak F, Moura JJG, Moura I, Romão MJ (2000) Gene sequence and crystal structure of the aldehyde oxidoreductase from Desulfovibrio desulfuricans ATCC 277741. J Mol Biol 297(1):135–146

    Article  CAS  PubMed  Google Scholar 

  10. Romão JM, Rösch N, Huber R (1997) The molybdenum site in the xanthine oxidase-related aldehyde oxidoreductase from Desulfovibrio gigas and a catalytic mechanism for this class of enzymes. In J Biol Inorg Chem 2:782–785

    Article  Google Scholar 

  11. Santos-Silva T, Ferroni F, Thapper A, Marangon J, González PJ, Rizzi AC, Moura I, Moura JJG, Romão MJ, Brondino CD (2009) Kinetic, structural, and EPR studies reveal that aldehyde oxidoreductase from Desulfovibrio gigas does not need a sulfido ligand for catalysis and give evidence for a direct mo-c interaction in a biological system. J Am Chem Soc 131(23):7990–7998

    Article  CAS  PubMed  Google Scholar 

  12. Metz S, Wang D, Thiel W (2009) Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: a combined QM/MM study. J Am Chem Soc 131(13):4628–4640

    Article  CAS  PubMed  Google Scholar 

  13. Karrasch M, Borner G, Thauer RK (1990) The molybdenum cofactor of formylmethanofuran dehydrogenase from Methanosarcina barkeri is a molybdopterin guanine dinucleotide. FEBS Lett 274(1–2):48–52

    CAS  PubMed  Google Scholar 

  14. Hille R (2002) Molybdenum and tungsten in biology. Trends Biochem Sci 27(7):360–367

    Article  CAS  PubMed  Google Scholar 

  15. McMaster J, Enemark JH (1998) The active sites of molybdenum- and tungsten-containing enzymes. Curr Opin Chem Biol 2(2):201–207

    Article  CAS  PubMed  Google Scholar 

  16. Karrasch M, Bner G, Enssle M, Thauer RK (1990) The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor. Eur J Biochem 194(2):367–372

    Article  CAS  PubMed  Google Scholar 

  17. Peariso K, McNaughton RL, Kirk ML (2002) Active-site stereochemical control of oxygen atom transfer reactivity in sulfite oxidase. J Am Chem Soc 124(31):9006–9007

    Article  CAS  PubMed  Google Scholar 

  18. Enemark JH, Cooney JJA, Wang J-J, Holm RH (2004) Synthetic analogues and reaction systems relevant to the molybdenum and tungsten oxotransferases. Chem Rev 104(2):1175–1200

    Article  CAS  PubMed  Google Scholar 

  19. Hille R, Hall J, Basu P (2014) The mononuclear molybdenum enzymes. Chem Rev 114(7):3963–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jones RM, Inscore FE, Hille R, Kirk ML (1999) Freeze-quench magnetic circular dichroism spectroscopic study of the “very rapid” intermediate in xanthine oxidase. Inorg Chem 38(22):4963–4970

    Article  CAS  PubMed  Google Scholar 

  21. Schmitz RA, Richter M, Linder D, Thauer RK (1992) A tungsten-containing active formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. Eur J Biochem 207(2):559–565

    Article  CAS  PubMed  Google Scholar 

  22. Becke AD (1993) Perspective on “Density functional thermochemistry. III. The role of exact exchange”. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  23. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33(12):8822–8824

    Article  Google Scholar 

  24. Noodleman L, Han WG (2006) Structure, redox, pK a, spin. A golden tetrad for understanding metalloenzyme energetics and reaction pathways. J Biol Inorg Chem 11:674–694

    Article  CAS  PubMed  Google Scholar 

  25. Lovell T, Himo F, Han WG, Noodleman L (2003) Density functional methods applied to metalloenzymes. Coord Chem Rev 238–239:211–232

    Article  Google Scholar 

  26. Mouesca JM, Chen JL, Noodleman L, Bashford D, Case DA (1994) Density functional/poisson-boltzmann calculations of redox potentials for iron-sulfur clusters. J Am Chem Soc 116(26):11898–11914

    Article  CAS  Google Scholar 

  27. Konecny R, Li J, Fisher CL, Dillet V, Bashford D, Noodleman L (1999) CuZn superoxide dismutase geometry optimization, energetics, and redox potential calculations by density functional and electrostatic methods. Inorg Chem 38(5):940–950

    Article  CAS  PubMed  Google Scholar 

  28. Torres RA, Lovell T, Noodleman L, Case DA (2003) Density functional and reduction potential calculations of Fe4S4 clusters. J Am Chem Soc 125(7):1923–1936

    Article  CAS  PubMed  Google Scholar 

  29. Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. I. In 23:1833–1840

    CAS  Google Scholar 

  30. Bartoschek S, Vorholt JA, Thauer RK, Geierstanger BH, Griesinger C (2000) N-Carboxymethanofuran (carbamate) formation from methanofuran and CO2 in methanogenic archaea. Eur J Biochem 267(11):3130–3138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is funded by the Department of Science and Technology SERB grant SB/S1/IC-25/2013. A. R. acknowledges Int. Ph.D. program of IACS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Dey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, A., Dey, A. Theoretical exploration of the mechanism of formylmethanofuran dehydrogenase: the first reductive step in CO2 fixation by methanogens. J Biol Inorg Chem 21, 703–713 (2016). https://doi.org/10.1007/s00775-016-1377-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1377-4

Keywords

Navigation