Skip to main content
Log in

Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase were tested in cell extracts of 10 different methanogenic bacteria grown on H2/CO2 or on other methanogenic substrates. The four activities were found in all the organisms investigated: Methanobacterium thermoautotrophicum,M. wolfei, Methanobrevibacter arboriphilus, Methanosphaera stadtmanae, Methanosarcina barkeri (strains Fusaro and MS), Methanothrix soehngenii, Methanospirillum hungatei, Methanogenium organophilum, and Methanococcus voltae. Cell extracts of H2/CO2 grown M. barkeri and of methanol grown M. barkeri showed the same specific activities suggesting that the four enzymes are of equal importance in CO2 reduction to methane and in methanol disproportionation to CO2 and CH4. In contrast, cell extracts of acetate grown M. barkeri exhibited much lower activities of formylmethanofuran dehydrogenase and methylenetetrahydromethanopterin dehydrogenase suggesting that these two enzymes are not involved in methanogenesis from acetate. In M. stadtmanae, which grows on H2 and methanol, only heterodisulfide reductase was detected in activities sufficient to account for the in vivo methane formation rate. This finding is consistent with the view that the three other oxidoreductases are not required for methanol reduction to methane with H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MFR:

methanofuran

H4MPT:

tetrahydromethanopterin

H-S-CoM:

coenzyme M

H-S-HTP:

7-mercaptoheptanoylthreonine phosphate (component B)

CoM-S-S-HTP:

heterodisulfide of H-S-CoM and H-S-HTP

References

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43: 260–296

    PubMed  CAS  Google Scholar 

  • Bobik TA, Wolfe RS (1988) Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium. Proc Natl Acad Sci USA 85: 60–63

    Article  PubMed  CAS  Google Scholar 

  • Börner G, Karrasch M, Thauer RK (1989) Formylmethanofuran dehydrogenase activity in cell extracts of Methanobacterium thermoautotrophicum and of Methanosarcina barkeri. FEBS Lett 244: 21–25

    Article  Google Scholar 

  • Bott MH, Eikmanns B, Thauer RK (1985) Defective formation and/or utilization of carbon monoxide in H2/CO2 fermenting methanogens dependent on acetate as carbon source. Arch Microbiol 143: 266–269

    Article  CAS  Google Scholar 

  • Brandis A, Thauer RK, Stetter KO (1981) Relatedness of strains △H and Marburg of Methanobacterium thermoautotrophicum. Zentralbl Bakteriol Hyg [C] 2: 311–317

    CAS  Google Scholar 

  • Breitung J, Börner G, Karrasch M, Berkessel A, Thauer RK (1990) N-Furfurylformamide as a pseudo-substrate for formyl-methanofuran converting enzymes from methanogenic bacteria. FEBS Lett 268: 257–260

    Article  PubMed  CAS  Google Scholar 

  • Bryant MP, Boone DR (1987) Emended description of strain MST (DSM 800T), the type strain of Methanosarcina barkeri. Int J Syst Bacteriol 37: 169–170

    Article  Google Scholar 

  • DiMarco AA, Bobik TA, Wolfe RS (1990) Unusual coenzymes of methanogenesis. Annu Rev Biochem 59: 355–394

    Article  PubMed  CAS  Google Scholar 

  • Donnelly MI, Wolfe RS (1986) The role of formylmethanofuran: tetrahydromethanopterin formyltransferase in methanogenesis from carbon dioxide. J Biol Chem 261: 16653–16659

    PubMed  CAS  Google Scholar 

  • Ellefson WL, Whitman WB, Wolfe RS (1982) Nickel-containing factor F430: chromophore of the methylreductase of Methanobacterium. Proc Natl Acad Sci USA 79: 3707–3710

    Article  PubMed  CAS  Google Scholar 

  • Ellermann J, Hedderich R, Böcher R, Thauer RK (1988) The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem 172: 669–677

    Article  PubMed  CAS  Google Scholar 

  • Ellermann J, Rospert S, Thauer RK, Bokranz M, Klein A, Voges M, Berkesset A (1989) Methyl-coenzyme-M reductase from Methanobacterium thermoautotrophicum (strain Marburg). Purity, activity and novel inhibitors. Eur J Biochem 184: 63–68

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Thauer RK (1989) Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri. Arch Microbiol 151: 459–465

    CAS  Google Scholar 

  • Hartzell PL, Wolfe RS (1986) Comparative studies of component C from the methylreductase system of different methanogens. Syst Appl Microbiol 7: 376–382

    CAS  Google Scholar 

  • Hartzell PL, Zvilius G, Escalante-Semerena JC, Donnelly MI (1985) Coenzyme F420 dependence of the methylenetetrahydromethanopterin dehydrogenase of Methanobacteriumthermoautotrophicum. Biochem Biophys Res Commun 133: 884–890

    Article  PubMed  CAS  Google Scholar 

  • Hedderich R, Berkessel A, Thauer RK (1989) Catalytic properties of the heterodisulfide reductase involved in the final step of methanogenesis. FEBS Lett 255: 67–71

    Article  CAS  Google Scholar 

  • Hedderich R, Berkessel A, Thauer RK (1990) Purification and properties of heterodisulfide (CoM-S-S-HTP) reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem 193: 255–261

    Article  PubMed  CAS  Google Scholar 

  • Hippe H, Caspari D, Fiebig K, Gottschalk G (1979) Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc Natl Acad Sci USA 76: 494–498

    Article  PubMed  CAS  Google Scholar 

  • Huser BA, Wuhrmann K, Zehnder AJB (1982) Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogenoxidizing methane bacterium. Arch Microbiol 132: 1–9

    Article  CAS  Google Scholar 

  • Jablonski PE, DiMarco AA, Bobik TA, Cabell MC, Ferry JG (1990) Protein content and enzyme activities in methanol-and acetategrown Methanosarcina thermophila. J Bacteriol 172: 1271–1275

    PubMed  CAS  Google Scholar 

  • Jetten MSM, Stams AJM, Zehnder AJB (1989a) Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase of Methanothrix soehngenii. Eur J Biochem 181: 437–441

    Article  PubMed  CAS  Google Scholar 

  • Jetten MSM, Stams AJM, Zehnder AJB (1989b) Isolation and characterization of acetyl-coenzyme A synthase from Methanotrix soehngenii. J Bacteriol 171: 5430–5435

    PubMed  CAS  Google Scholar 

  • Jetten MSM, Stams AJM, Zehnder AJB (1990) Purification and some properties of the methy-CoM reductase of Methanothrix soehngenii. FEMS Microbiol Lett 66: 183–186

    Article  CAS  Google Scholar 

  • Kandler O, Hippe H (1977) Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Arch Microbiol 113: 57–60

    Article  PubMed  CAS  Google Scholar 

  • Karrasch M, Bott M, Thauer RK (1989a) Carbonic anhydrase activity in acetate grown Methanosarcina barkeri. Arch Microbiol 151: 137–142

    Article  CAS  Google Scholar 

  • Karrasch M, Börner G, Enßle M, Thauer RK (1989b) Formylmethanofuran dehydrogenase from methanogenic bacteria, a molybdoenzyme. FEBS Lett 253: 226–230

    Article  PubMed  CAS  Google Scholar 

  • Karrasch M, Börner G, Enßle M, Thauer RK (1990a) The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor. Eur J Biochem 194: 367–372

    Article  PubMed  CAS  Google Scholar 

  • Karrasch M, Börner G, Thauer RK (1990b) The molybdenum cofactor of formylmethanofuran dehydrogenase from Methanosarcina barkeri is a molybdopterin guanine dinucleotide. FEBS Lett 274: 48–52

    Article  PubMed  CAS  Google Scholar 

  • Konheiser U, Pasti G, Bollschweiler C, Klein A (1984) Physical mapping of genes coding for two subunits of methyl-CoM reductase component C of Methanococcus voltae. Mol Gen Gen 198: 146–152

    Article  CAS  Google Scholar 

  • Krzycki JA, Mortenson LE, Prince RC (1989) Paramagnetic centers of carbon monoxide dehydrogenase from aceticlastic Methanosarcina barkeri. J Biol Chem 264: 7217–7221

    PubMed  CAS  Google Scholar 

  • Ma K, Thauer RK (1990a) Purification and properties of N5, N10-methylenetetrahydromethanopterin reductase from Methanobaterium thermoautotrophicum (strain Marburg). Eur J Biochem 191: 187–193

    Article  PubMed  CAS  Google Scholar 

  • Ma K, Thauer RK (1990b) Single step purification of methylenetetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum by specific binding to Blue Sepharose CL-6B. FEBS Lett 268: 59–62

    Article  PubMed  CAS  Google Scholar 

  • Ma K, Thauer RK (1990c) N5, N10-Methylenetetrahydromethanopterin reductase from Methanosarcina barkeri. FEMS Microbiol Lett 70: 119–124

    CAS  Google Scholar 

  • Mahlmann A, Deppenmeier U, Gottschalk G (1989) Methanofuran-b is required for CO2 formation from formaldehyde by Methanosarcina barkeri. FEMS Microbiol Lett 61: 115–120

    Article  CAS  Google Scholar 

  • Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniee gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141: 116–122

    Article  PubMed  CAS  Google Scholar 

  • Moura I, Moura JJG, Santos H, Xavier AV, Burch G, Peck HDJr, LeGall J (1983) Proteins containing the factor F430 from Methanosarcina barkeri and Methanobacterium thermoautotrophicum. Isolation and properties. Biochim Biophys Acta 742: 84–90

    CAS  Google Scholar 

  • Mukhopadhyay B, Daniels L (1989) Aerobic purification of N5, N10-methylenetetrahydromethanopterin dehydrogenase, separated from N5, N10-methenyltetrahydromethanopterin cyclohydrolase, from Methanobacterium thermoautotrophicum strain Marburg. Can J Microbiol 35: 499–507

    Article  PubMed  CAS  Google Scholar 

  • Pfaltz A, Kobelt A, Hüster R, Thauer RK (1987) Biosynthesis of coenzyme F430 in methanogenic bacteria. Identification of 15,173-seco-F430-173-acid as an intermediate. Eur J Biochem 170: 459–467

    Article  PubMed  CAS  Google Scholar 

  • Rospert S, Linder D, Ellermann J, Thauer RK (1990) Two genetically distinct methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum strain Marburg and △H. Eur J Biochem 194: 871–877

    Article  PubMed  CAS  Google Scholar 

  • Rouvière PE, Wolfe RES (1987) Use of subunits of the methylreductase protein for taxonomy of methanogenic bacteria. Arch Microbiol 148: 253–259

    Article  Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1980) Growth parameters (Ks, μmax, Ys) of Methanobacterium thermoautotrophicum. Arch Microbiol 127: 59–65

    Article  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76–85

    Article  PubMed  CAS  Google Scholar 

  • te Brömmelstroet BW, Hensgens CMH, Keltjens JT, Drift C van der, Vogels GD (1990) Purification and properties of 5,10-methylenetetrahydromethanopterin reductase, a coenzyme F420-dependent enzyme, from Methanobacterium thermoautotrophicum strain △H. J Biol Chem 265: 1852–1857

    Google Scholar 

  • Thauer RK (1990) Energy metabolism of methanogenic bacteria. Biochim Biophys Acta 1018: 256–259

    Article  CAS  Google Scholar 

  • Thauer RK, Möller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Ann Rev Microbiol 43: 43–67

    CAS  Google Scholar 

  • Weimer PJ, Zeikus JG (1978a) Acetate metabolism in Methanosarcina barkeri. Arch Microbiol 119: 175–182

    Article  PubMed  CAS  Google Scholar 

  • Weimer PJ, Zeikus JG (1978b) One carbon metabolism in methanogenic bacteria. Arch Microbiol 119: 49–57

    Article  PubMed  CAS  Google Scholar 

  • White RH (1988) Structural diversity among methanofurans from different methanogenic bacteria. J Bacteriol 170: 4594–4597

    PubMed  CAS  Google Scholar 

  • Whitman WB, Ankwanda E, Wolfe RS (1982) Nutrition and carbon metabolism of Methanococcus volate. J Bacteriol 149: 852–863

    PubMed  CAS  Google Scholar 

  • Widdel F (1986) Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol 51: 1056–1062

    PubMed  CAS  Google Scholar 

  • Widdel F, Rouvière PE, Wolfe RS (1988) Classification of secondary alcohol-utilizing methanogens including a new thermophilic isolate. Arch Microbiol 150: 477–481

    Article  CAS  Google Scholar 

  • Winter J, Lerp C, Zabel H-P, Wildenauer FX, König H, Schindler F (1984) Methanobacterium wolfei, sp. nov., a new tungstenrequiring, thermophilic, autotrophic methanogen. Syst Appl Microbiol 5: 457–466

    CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    PubMed  CAS  Google Scholar 

  • Zehnder AJB, Wuhrmann K (1977) Physiology of a Methanobacterium strain AZ. Arch Microbiol 111: 199–205

    Article  CAS  Google Scholar 

  • Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicum sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109: 707–713

    PubMed  CAS  Google Scholar 

  • Zirngibl C, Hedderich R, Thauer RK (1990) N5, N10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum has hydrogenase activity. FEBS Lett 261: 112–116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwörer, B., Thauer, R.K. Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria. Arch. Microbiol. 155, 459–465 (1991). https://doi.org/10.1007/BF00244962

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00244962

Key words

Navigation