Skip to main content
Log in

Protective effects of appropriate Zn2+ levels against UVB radiation-induced damage in human lens epithelial cells in vitro

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

As one of the crucial factors of cataract formation, ultraviolet B (UVB) can lead to apoptosis of human lens epithelial cells. Zinc, a cell-protective metal against various toxic compounds, plays an important role in protecting target cells from damage. Nevertheless, it is still unclear whether zinc exhibits protective effect on human lens epithelial cells (HLE B-3) against UVB-induced damage. In this study, we investigated the protective effect of zinc chloride (ZnCl2) on UVB-induced HLE B-3 cell damage, explored the molecular mechanisms using real-time cell electronic sensing system, flow cytometry, real-time quantitative PCR and enzyme-linked immunosorbent assay techniques. The results show that ZnCl2 is a potential inhibitor of UVB-induced HLE B-3 cell damage, and the underlying mechanisms are involved in decreasing the overproduction of reactive oxygen species and mitochondrial dysfunction, promoting intracellular calcium homeostasis recovery, and thus maintaining cell normal physiological functions. Taken together, our findings suggest that appropriate zinc levels have potential for protecting HLE B-3 cells against UVB-induced damage, and this finding may be clinically useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roberts JE (2001) J Photoch Photobiol B 64:136–143

    Article  CAS  Google Scholar 

  2. Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T (2003) Toxicology 189:21–39

    Article  CAS  PubMed  Google Scholar 

  3. Krutmann J (2000) J Dermatol Sci 23(Suppl 1):S22–S26

    Article  CAS  PubMed  Google Scholar 

  4. Paterson CA, Zeng J, Husseini Z, Borchman D, Delamere NA, Garland D, Jimenez-Asensio J (1997) Curr Eye Res 16:333–338

    Article  CAS  PubMed  Google Scholar 

  5. Carafoli E (2004) Trends Biochem Sci 29:371–379

    Article  CAS  PubMed  Google Scholar 

  6. Clark JI, Mengel L, Bagg A, Benedek GB (1980) Exp Eye Res 31:399–410

    Article  CAS  PubMed  Google Scholar 

  7. Hightower KR (1985) Curr Eye Res 4:453–459

    Article  CAS  PubMed  Google Scholar 

  8. Duncan G, Jacob TJ (1984) Ciba Found Symp 106:132–152

    CAS  PubMed  Google Scholar 

  9. Chiesa R, Sredy J, Spector A (1985) Curr Eye Res 4:897–903

    Article  CAS  PubMed  Google Scholar 

  10. Brini M (2009) Pflugers Arch 457:657–664

    Article  CAS  PubMed  Google Scholar 

  11. Marian MJ, Mukhopadhyay P, Borchman D, Tang D, Paterson CA (2007) Cell Calcium 41:87–95

    Article  CAS  PubMed  Google Scholar 

  12. de la Bastie D, Levitsky D, Rappaport L, Mercadier JJ, Marotte F, Wisnewsky C, Brovkovich V, Schwartz K, Lompré AM (1990) Circ Res 66:554–564

    Article  PubMed  Google Scholar 

  13. Anger M, Samuel J-L, Marotte F, Wuytack F, Rappaport L, Lompre′ A-M (1993) FEBS Lett 334:45–48

    Article  CAS  PubMed  Google Scholar 

  14. Ahuja RP, Borchman D, Dean WL, Paterson CA, Zeng J, Zhang Z, Ferguson-Yankey S, Yappert MC (1999) Free Radical Biol Med 27:177–185

    Article  CAS  Google Scholar 

  15. Zhang YK, Zhu DF, Zhang YP, Chen HZ, Xiang J, Lin XQ (2015) Low pH-induced changes of antioxidant enzyme and ATPase activities in the roots of rice (Oryza sativa L.) seedings. PLoS One 10(2):e0116971

    Article  PubMed  PubMed Central  Google Scholar 

  16. Da Costa R, Botana D, Piñero S, Proverbio F, Marín R (2015) Cadmium inhibits motility, activities of plasma membrane Ca2+ -ATPase and axonemal dynein-ATPase of human spermatozoa. Andrologia. doi:10.1111/and.12466

    Google Scholar 

  17. Borchman D, Paterson C, Delamere N (1988) Selective inhibition of membrane ATPases by hydrogen peroxide in the lens of the eye. Basic Life Sci 49:1029–1033

    CAS  PubMed  Google Scholar 

  18. Chang RC, Shi L, Huang CC, Kim AJ, Ko ML, Zhou B, Ko GY (2015) High-fat diet-induced retinal dysfunction. Invest Ophthalmol Vis Sci 56(4):2367–2380

    Article  PubMed  PubMed Central  Google Scholar 

  19. Marian MJ, Mukhopadhyay P, Borchman D, Tang D, Paterson CA (2008) Open Ophthalmol J 2:123–129

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yamaguchi M, Weitzmann MN (2011) Mol Cell Biochem 355:179–186

    Article  CAS  PubMed  Google Scholar 

  21. Seo HJ, Cho YE, Kim T, Shin HI, Kwun IS (2010) Nutr Res Pract 4:356–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hogstrand C, Kille P, Nicholson RI, Taylor KM (2009) Trends Mol Med 15:101–111

    Article  CAS  PubMed  Google Scholar 

  23. Zhao L, Chen W, Taylor KM, Cai B, Li X (2007) Biochem Biophys Res Commun 363:82–88

    Article  CAS  PubMed  Google Scholar 

  24. Murakami M, Hirano T (2008) Cancer Sci 99:1515–1522

    Article  CAS  PubMed  Google Scholar 

  25. Dubi N, Gheber L, Fishman D, Sekler I, Hershfinkel M (2008) Carcinogenesis 29:1692–1700

    Article  CAS  PubMed  Google Scholar 

  26. Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K, Hirano T (2007) J Cell Biol 177:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chiang HM, Chen HC, Chiu HH, Chen CW, Wang SM, Wen KC (2013) Evid Based Compl Alt 2013:324864

    Google Scholar 

  28. Lee CW, Ko HH, Lin CC, Chai CY, Chen WT, Yen FL (2013) Food Chem Toxicol 60C:123–129

    Article  Google Scholar 

  29. Mantena SK, Katiyar SK (2006) Free Radic Biol Med 40:1603–1614

    Article  CAS  PubMed  Google Scholar 

  30. Richard MJ, Guiraud P, Leccia MT, Beani JC, Favier A (1993) Biol Trace Elem Res 37:187–199

    Article  CAS  PubMed  Google Scholar 

  31. Parat MO, Richard MJ, Pollet S, Hadjur C, Favier A, Béani JC (1997) J Photochem Photobiol B 37:101–106

    Article  CAS  PubMed  Google Scholar 

  32. Arends SJ, Damoiseaux JG, Duijvestijn AM, Debrus-Palmans L, Vroomen M, Boomars KA, Rocca HP, Reutelingsperger CP, Tervaert JW, van Paassen P (2013) Clin Exp Immunol 174:433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo D, Wu C, Li J, Guo A, Li Q, Jiang H, Chen B, Wang X (2009) Nanoscale Res Lett 4:1395–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo D, Bi H, Wang D, Wu Q (2013) Int J Biochem Cell Biol 45:1849–1859

    Article  CAS  PubMed  Google Scholar 

  35. Wu Q, Guo D, Bi H, Wang D, Du Y (2013) Mol Cell Biochem 382:263–272

    Article  CAS  PubMed  Google Scholar 

  36. Livak KJ, Schmittgen TD (2001) Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  37. Yao J, Liu Y, Wang X, Shen Y, Yuan S, Wan Y, Jiang Q (2009) Int J Mol Med 24:153–159

    CAS  PubMed  Google Scholar 

  38. Yao K, Zhang L, Zhang Y, Ye P, Zhu N (2008) Mol Vis 14:1865–1871

    CAS  PubMed  PubMed Central  Google Scholar 

  39. McCord MC, Aizenman E (2013) P Natl Acad Sci USA 110:13988–13993

    Article  CAS  Google Scholar 

  40. Wang CL, Liu C, Niu LL, Wang LR, Hou LH, Cao XH (2013) Cell Biochem Biophys 67:1433–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andley UP, Lewis RM, Reddan JR, Kochevar IE (1994) Invest Ophth Vis Sci 35:367–373

    CAS  Google Scholar 

  42. Andley UP, Weber JG (1995) Photochem Photobiol 62:840–846

    Article  CAS  PubMed  Google Scholar 

  43. Andley UP, Malone JP, Townsend RR (2011) Invest Ophthalmol Vis Sci 52:8330–8341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saito T, Tezuka T, Konno R, Fujii N (2010) Jpn J Ophthalmol 54:486–493

    Article  CAS  PubMed  Google Scholar 

  45. Bozym RA, Chimienti F, Giblin LJ, Gross GW, Korichneva I, Li Y, Libert S, Maret W, Parviz M, Frederickson CJ, Thompson RB (2010) Exp Biol Med (Maywood) 235:741–750

    Article  CAS  Google Scholar 

  46. Guo D, Du Y, Wu Q, Jiang W, Bi H (2014) Arch Biochem Biophys 159:425–433

    Google Scholar 

  47. Canani RB, Cirillo P, Buccigrossi V, Ruotolo S, Passariello A, De Luca P, Porcaro F, De Marco G, Guarino A (2005) J Infect Dis 191:1072–1077

    Article  CAS  PubMed  Google Scholar 

  48. Moltedo O, Verde C, Capasso A, Parisi E, Remondelli P, Bonatti S, Alvarez-Hernandez X, Glass J, Alvino CG, Leone A (2000) J Biol Chem 275:31819–31825

    Article  CAS  PubMed  Google Scholar 

  49. Zödl B, Zeiner M, Sargazi M, Roberts NB, Marktl W, Steffan I, Ekmekcioglu C (2003) J Inorg Biochem 97:324–330

    Article  PubMed  Google Scholar 

  50. Cario E, Jung S, Harder D’Heureuse J, Schulte C, Sturm A, Wiedenmann B, Goebell H, Dignass AU (2000) Eur J Clin Invest 30:419–428

    Article  CAS  PubMed  Google Scholar 

  51. Nakatani T, Tawaramoto M, OpareKennedy D, Kojima A, Matsui-Yuasa I (2000) Chem Biol Interact 125:151–163

    Article  CAS  PubMed  Google Scholar 

  52. Lagouge M, Larsson NG (2013) J Intern Med 273:529–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sharir H, Zinger A, Nevo A, Sekler I, Hershfinkel M (2010) J Biol Chem 285:26097–26106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berridge MJ (2009) Biochim Biophys Acta 1793:933–940

    Article  CAS  PubMed  Google Scholar 

  55. Penniston JT, Padányi R, Pászty K, Varga K, Hegedus L, Enyedi A (2014) J Cell Sci 127:72–84

    Article  CAS  PubMed  Google Scholar 

  56. Williams MR, Riach RA, Collison DJ, Duncan G (2001) Invest Ophthalmol Vis Sci 42:1009–1017

    CAS  PubMed  Google Scholar 

  57. Hadri L, Pavoine C, Lipskaia L, Yacoubi S, Lompré AM (2006) Biochem J 394:27–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu L, Paterson CA, Borchman D (2002) Exp Eye Res 75:583–590

    Article  CAS  PubMed  Google Scholar 

  59. Ermak G, Davies KJ (2002) Mol Immunol 38:713–721

    Article  CAS  PubMed  Google Scholar 

  60. Abramov AY, Jacobson J, Wientjes F, Hothersall J, Canevari L, Duchen MR (2005) J Neurosci 25:9176–9184

    Article  CAS  PubMed  Google Scholar 

  61. Doughan AK, Harrison DG, Dikalov SI (2008) Circ Res 102:488–496

    Article  CAS  PubMed  Google Scholar 

  62. Bedard K, Krause KH (2007) Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Natural Science Foundation of Shandong province (ZR2010HM032, ZR2014HL048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongsheng Bi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Guo, D., Wu, Q. et al. Protective effects of appropriate Zn2+ levels against UVB radiation-induced damage in human lens epithelial cells in vitro. J Biol Inorg Chem 21, 213–226 (2016). https://doi.org/10.1007/s00775-015-1324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1324-9

Keywords

Navigation