Skip to main content
Log in

ArsC3 from Desulfovibrio alaskensis G20, a cation and sulfate-independent highly efficient arsenate reductase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Desulfovibrio alaskensis G20, a sulfate-reducing bacterium, contains an arsRBC2C3 operon that encodes two putative arsenate reductases, DaG20_ArsC2 and DaG20_ArsC3. In this study, resistance assays in E. coli transformed with plasmids containing either of the two recombinant arsenate reductases, showed that only DaG20_ArsC3 is functional and able to confer arsenate resistance. Kinetic studies revealed that this enzyme uses thioredoxin as electron donor and therefore belongs to Staphylococcus aureus plasmid pI258 and Bacillus subtilis thioredoxin-coupled arsenate reductases family. Both enzymes from this family contain a potassium-binding site, but only in Sa_ArsC does potassium actually binds resulting in a lower K m. Important differences between the S. aureus and B. subtilis enzymes and DaG20_ArsC3 are observed. DaG20_ArsC3 contains only two (Asn10, Ser33) of the four (Asn10, Ser33, Thr63, Asp65) conserved amino acid residues that form the potassium-binding site and the kinetics is not significantly affected by the presence of either potassium or sulfate ions. Isothermal titration calorimetry measurements confirmed nonspecific binding of K+ and Na+, corroborating the non-relevance of these cations for catalysis. Furthermore, the low K m and high k cat values determined for DaG20_ArsC3 revealed that this enzyme is the most catalytically efficient potassium-independent arsenate reductase described so far and, for the first time indicates that potassium binding is not essential to have low K m, for Trx-arsenate reductases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ArsC:

Arsenate reductase

DTT:

Dithiothreitol

ESI-microTOF:

Electrospray ionization micro time of flight

IPTG:

Isopropyl-β-d-thiogalactopyranoside

LB:

Luria Broth

LMW PTPases:

Low molecular mass tyrosine phosphatases

pNPP:

4-Nitrophenyl phosphate disodium salt hexahydrate

SRB:

Sulfate-reducing bacterium

Trx:

Thioredoxin

TrxR:

Thioredoxin reductase

References

  1. Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J, Stolz JF, Webb SM, Weber PK, Davies PCW, Anbar AD, Oremland RS (2010) Science 332:1163–1166

    Article  PubMed  Google Scholar 

  2. Slaughter DC, Macur RE, Inskeep WP (2012) Microbiol Res 167:151–156

    Article  CAS  PubMed  Google Scholar 

  3. Achour-Rokbani A, Cordi A, Poupin P, Bauda P, Billard P (2010) Appl Environ Microbiol 76:948–955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Tsai SL, Singh S, Chen W (2009) Biotechnology 20:659–667

    CAS  Google Scholar 

  5. Branco R, Chung AP, Morais PV (2008) BMC Microbiol 8:95

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bhattacharjee H, Rosen BP (2007) In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer, Heidelberg, pp 371–406

    Chapter  Google Scholar 

  7. Silver S, Phung LT (2005) Appl Environ Microbiol 71:599–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Messens J, Silver S (2006) J Mol Biol 362:1–17

    Article  CAS  PubMed  Google Scholar 

  9. Kaur S, Kamli MR, Ali A (2009) Microbiol 59:288–294

    CAS  Google Scholar 

  10. Páez-Espino D, Tamames J, Lorenzo V, Cánovas D (2009) Biometals 22:117–130

    Article  PubMed  Google Scholar 

  11. Guo X, Li Y, Peng K, Hu Y, Li C, Xia B, Jin C (2005) J Biol Chem 280:39601–39608

    Article  CAS  PubMed  Google Scholar 

  12. Qin J, Fu HL, Ye J, Bencze KZ, Stemmler TL, Rawlings DE, Rosen BP (2007) J Biol Chem 282:34346–34355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Messens J, Martins JC, Brosens E, Belle K, Jacobs DM, Willem R, Wyns L (2002) J Biol Inorg Chem 7:146–156

    Article  CAS  PubMed  Google Scholar 

  14. Oremland RS, Stolz JF (2003) Science 300:939–944

    Article  CAS  PubMed  Google Scholar 

  15. Ordóñez E, Van Belle K, Roos G, De Galan S, Letek M, Gil JA, Wyns L, Mateos LM, Messens J (2009) J Biol Chem 284:15107–15116

    Article  PubMed Central  PubMed  Google Scholar 

  16. Villadangos AF, Van Belle K, Wahni K, Dufe VT, Freitas S, Nur H, De Galan S, Gil JA, Collet JF, Matos LM, Messens J (2011) Mol Microbiol 82:998–1014

    Article  CAS  PubMed  Google Scholar 

  17. Martin P, DeMel S, Shi J, Gladysheva T, Gatti DL, Rosen BP, Edwards BFP (2001) Structure 9:1071–1081

    Article  CAS  PubMed  Google Scholar 

  18. Bennet MS, Guan Z, Laurberg M, Su X (2001) PNAS 98:13577–13582

    Article  Google Scholar 

  19. Li Y, Hu Y, Zhang X, Xu H, Lescop E, Xia B, Jin C (2007) J Bio Chem 282:11078–11083

    Article  CAS  Google Scholar 

  20. Zegers I, Martins JC, Willem R, Wyns L, Messens J (2001) Nature 8:843–847

    CAS  Google Scholar 

  21. Messens J, Hayburn G, Desmyter A, Laus G, Wyns L (1999) Biochemistry 38:16857–16865

    Article  CAS  PubMed  Google Scholar 

  22. Messens J, Molle IV, Vanhaesebrouck P, Limbourg M, Van Belle K, Wahni K, Martins JC, Loris R, Wyns L (2004) J Mol Biol 339:527–537

    Article  CAS  PubMed  Google Scholar 

  23. Messens J, Martins JC, Zegers I, Van Belle K, Brosens E, Wyns L (2003) J Chromatogr B 790:217–227

    Article  CAS  Google Scholar 

  24. Roos G, Loverix S, Brosens E, Van Belle K, Wyns L, Geerlings P, Messens J (2006) ChemBioChem 7:981–989

    Article  CAS  PubMed  Google Scholar 

  25. Roos G, Buts L, Van Belle K, Brosens E, Geerlings P, Loris R, Wyns L, Geerlings P, Messens J (2006) J Mol Biol 360:826–838

    Article  CAS  PubMed  Google Scholar 

  26. Lah N, Lah J, Zegers I, Wyns L, Messens J (2003) J Biol Chem 278:24673–24679

    Article  CAS  PubMed  Google Scholar 

  27. Rodionov DA, Dubchak I, Arkin A, Alm E, Gelfand MS (2004) Genome Biol 5:R90

    Article  PubMed Central  PubMed  Google Scholar 

  28. Carepo M, Baptista JF, Pamplona A, Fauque G, Moura JJG, Reis MAM (2002) Anaerobe 8:325–332

    Article  CAS  PubMed  Google Scholar 

  29. Hansen TA (1994) Antonie Van Leeuwenhoek 66:165–185

    Article  CAS  PubMed  Google Scholar 

  30. Steger JL, Vincent C, Ballard JD, Krumholz LR (2002) Appl Environ Microbiol 68:1932–1937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sarin R, Sharma YD (2006) Gene 376:107–115

    Article  CAS  PubMed  Google Scholar 

  32. Hemme CL, Wall JD (2004) J Integrative Biology 8:43–55

    CAS  Google Scholar 

  33. Li X, Krumholz LR (2009) J Bacteriol 191:4924–4933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Li X, Krumholz LR (2007) J Bacteriol 189:3705–3711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Hauser LJ, Land ML, Brown SD, Larimer F, Keller KL, Rapp-Giles BJ, Price MN, Lin M, Bruce DC, Detter JC, Tapia R, Han CS, Goodwin LA, Cheng J-F, Pitluck S, Copeland A, Lucas S, Nolan M, Lapidus AL, Palumbo AV, Wall JD (2011) J Bacteriol 193:4268–4269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Sambrook J, Russel D (2001) In: Molecular cloning—a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 1508–1526

  37. Pinheiro BA, Proctor MR, Martinez-Fleites C, Prates JAM, Money VA, Davies GJ, Bayer EA, Fontes CMGA, Fierobe HP, Gilbert HJ (2008) J Biol Chem 28:18422–18430

    Article  Google Scholar 

  38. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) In: Walker JM (eds) The proteomics protocols handbook. Human Press, San Diego, pp 571–607

  39. Carepo MSP, Azevedo JSN, Porto JIR, Sousa ASB, Batista JS, Silva ALC, Schneider MPC (2004) Genet Mol Res 3:181–194

    CAS  PubMed  Google Scholar 

  40. Li R, Haile JD, Kennelly PJ (2003) J Bacteriol 185:6780–6789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Zhou J, He Q, Hemme CL, Mukhopadhyay A, Hillesland K, Zhou A, He Z, Van Nostrand JD, Hazen TC, Stahl DA, Wall JD, Arkin AP (2011) Nature 9:452–466

    CAS  Google Scholar 

  42. Rosen BP (2002) FEBS Lett 529:86–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Fundação para a Ciência e Tecnologia for the grants PEst-C/EQB/LA0006/2011 and PTDC/BIA-PRO/103980/2008 and fellowship SFRH/BD/62051/2009 to CIPN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta S. P. Carepo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, C.I.P., Brás, J.L.A., Najmudin, S. et al. ArsC3 from Desulfovibrio alaskensis G20, a cation and sulfate-independent highly efficient arsenate reductase. J Biol Inorg Chem 19, 1277–1285 (2014). https://doi.org/10.1007/s00775-014-1184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1184-8

Keywords

Navigation