Skip to main content

Advertisement

Log in

Alendronate does not prevent long bone fragility in an inactive rat model

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The lack of estrogen and inactivity are both important in the pathogenesis of osteoporosis in elderly women, and there have been no appropriate rodent studies to examine the effects of common bisphosphonates on these two components separately. We compared the efficacy of alendronate (ALN) on the long bones of aged female rats, which were sedentary, estrogen deficient, or both. The rats were either forced to remain in a sitting position or allowed to walk in standard cages with or without ALN administration. The 8-week experimental period began 5 weeks after ovariectomy or sham surgery. Parameters of the hindlimb bones were determined by a three-point bending test, peripheral quantitative computed tomography, microfocus computed tomography, confocal laser Raman microspectroscopy, and dynamic histomorphometry. Regardless of ovariectomy, ALN was ineffective against the deterioration of breaking stress caused by sitting even though the trabecular bone mineral density was significantly higher in the sitting–ALN groups. Toughness was significantly deficient in the ovariectomy sitting–ALN group. This was in agreement with the bone geometry with a greater marrow space. Sitting also increased the mineral-to-matrix ratio and the carbonate-to-phosphate ratio, both indicative of aged bone. A greater loss of proteinaceous amide intensity compared with mineral intensity resulted in an increased mineral-to-matrix ratio in the presence of ALN. Sitting resulted in deficits in the quality and the geometry of cortical bone, resulting in fragility. The use of bisphosphonates, such as ALN, may provide a therapy best suited for osteoporotic individuals whose daily activity is not limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Albrand G, Munoz F, Sornay-Rendu E, DuBoeuf F, Delmas PD (2003) Independent predictors of all osteoporosis-related fractures in healthy postmenopausal women: the OFELY study. Bone 32:78–85

    Article  CAS  PubMed  Google Scholar 

  2. Dalsky GP, Stocke KS, Ehsani AA, Slatopolsky E, Lee WC, Birge SJ Jr (1988) Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med 108:824–828

    Article  CAS  PubMed  Google Scholar 

  3. Morey ER, Baylink DJ (1978) Inhibition of bone formation during space flight. Science 201:1138–1141

    Article  CAS  PubMed  Google Scholar 

  4. Weinreb M, Rodan GA, Thompson DD (1989) Osteopenia in the immobilized rat hind limb is associated with increased bone resorption and decreased bone formation. Bone 10:187–194

    Article  CAS  PubMed  Google Scholar 

  5. Bagi CM, Mecham M, Weiss J, Miller SC (1993) Comparative morphometric changes in rat cortical bone following ovariectomy and/or immobilization. Bone 14:877–883

    Article  CAS  PubMed  Google Scholar 

  6. LeBlanc AD, Driscol TB, Shackelford LC, Evans HJ, Rianon NJ, Smith SM, Feeback DL, Lai D (2002) Alendronate as an effective countermeasure to disuse induced bone loss. J Musculoskelet Neuronal Interact 2:335–343

    CAS  PubMed  Google Scholar 

  7. Thompson DD, Seedor JG, Weinreb M, Rosini S, Rodan GA (1990) Aminohydroxybutane bisphosphonate inhibits bone loss due to immobilization in rats. J Bone Miner Res 5:279–286

    Article  CAS  PubMed  Google Scholar 

  8. Apseloff G, Girten B, Weisbrode SE, Walker M, Stern LS, Krecic ME, Gerber N (1993) Effects of aminohydroxybutane bisphosphonate on bone growth when administered after hind-limb bone loss in tail-suspended rats. J Pharmacol Exp Ther 267:515–521

    CAS  PubMed  Google Scholar 

  9. Li CY, Price C, Delisser K, Nasser P, Laudier D, Clement M, Jepsen KJ, Schaffler MB (2005) Long-term disuse osteoporosis seems less sensitive to bisphosphonate treatment than other osteoporosis. J Bone Miner Res 20:117–124

    Article  CAS  PubMed  Google Scholar 

  10. Boyce WJ, Vessey MP (1988) Habitual physical inertia and other factors in relation to risk of fracture of the proximal femur. Age Ageing 17:319–327

    Article  CAS  PubMed  Google Scholar 

  11. Wickham CA, Walsh K, Cooper C, Barker DJ, Margetts BM, Morris J, Bruce SA (1989) Dietary calcium, physical activity, and risk of hip fracture: a prospective study. BMJ 299:889–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feskanich D, Willett W, Colditz G (2002) Walking and leisure-time activity and risk of hip fracture in postmenopausal women. JAMA 288:2300–2306

    Article  PubMed  Google Scholar 

  13. Binkley N, Krueger D, Buehring B (2013) What’s in a name revisited: should osteoporosis and sarcopenia be considered components of “dysmobility syndrome?”. Osteoporos Int 24:2955–2959

    Article  CAS  PubMed  Google Scholar 

  14. Miyagawa K, Kozai Y, Ito Y, Furuhama T, Naruse K, Nonaka K, Nagai Y, Yamato H, Kashima I, Ohya K, Aoki K, Mikuni-Takagaki Y (2011) A novel underuse model shows that inactivity but not ovariectomy determines the deteriorated material properties and geometry of cortical bone in the tibia of adult rats. J Bone Miner Metab 29:422–436

    Article  PubMed  Google Scholar 

  15. Morris MD, Finney WF, Rajachar RM, Kohn DH (2004) Bone tissue ultrastructural response to elastic deformation probed by Raman spectroscopy. Faraday Discuss 126:159–168

    Article  CAS  PubMed  Google Scholar 

  16. Tarnowski CP, Ignelzi MA Jr, Morris MD (2002) Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy. J Bone Miner Res 17:1118–1126

    Article  PubMed  Google Scholar 

  17. Iwasaki Y, Kazama JJ, Yamato H, Fukagawa M (2011) Changes in chemical composition of cortical bone associated with bone fragility in rat model with chronic kidney disease. Bone 48:1260–1267

    Article  CAS  PubMed  Google Scholar 

  18. Rittweger J, Frost HM, Schiessl H, Ohshima H, Alkner B, Tesch P, Felsenberg D (2005) Muscle atrophy and bone loss after 90 days’ bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone 36:1019–1029

    Article  PubMed  Google Scholar 

  19. Bagi CM, Hanson N, Andresen C, Pero R, Lariviere R, Turner CH, Laib A (2006) The use of micro-CT to evaluate cortical bone geometry and strength in nude rats: correlation with mechanical testing, pQCT and DXA. Bone 38:136–144

    Article  PubMed  Google Scholar 

  20. Jee WS, Yao W (2001) Overview: animal models of osteopenia and osteoporosis. J Musculoskelet Neuronal Interact 1:193–207

    CAS  PubMed  Google Scholar 

  21. Allen MR, Reinwald S, Burr DB (2008) Alendronate reduces bone toughness of ribs without significantly increasing microdamage accumulation in dogs following 3 years of daily treatment. Calcif Tissue Int 82:354–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nyman JS, Roy A, Tyler JH, Acuna RL, Gayle HJ, Wang X (2007) Age-related factors affecting the postyield energy dissipation of human cortical bone. J Orthop Res 25:646–655

    Article  PubMed  PubMed Central  Google Scholar 

  23. Huang TH, Chang FL, Lin SC, Liu SH, Hsieh SS, Yang RS (2008) Endurance treadmill running training benefits the biomaterial quality of bone in growing male Wistar rats. J Bone Miner Metab 26:350–357

    Article  PubMed  Google Scholar 

  24. Macias BR, Swift JM, Nilsson MI, Hogan HA, Bouse SD, Bloomfield SA (2012) Simulated resistance training, but not alendronate, increases cortical bone formation and suppresses sclerostin during disuse. J Appl Physiol (1985) 112:918–925

    Article  CAS  Google Scholar 

  25. Swift JM, Swift SN, Nilsson MI, Hogan HA, Bouse SD, Bloomfield SA (2011) Cancellous bone formation response to simulated resistance training during disuse is blunted by concurrent alendronate treatment. J Bone Miner Res 26:2140–2150

    Article  CAS  PubMed  Google Scholar 

  26. Erben RG (1996) Trabecular and endocortical bone surfaces in the rat: modeling or remodeling? Anat Rec 246:39–46

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi S, Takahashi HE, Ito A, Saito N, Nawata M, Horiuchi H, Ohta H, Ito A, Iorio R, Yamamoto N, Takaoka K (2003) Trabecular minimodeling in human iliac bone. Bone 32:163–169

    Article  CAS  PubMed  Google Scholar 

  28. Ubara Y, Tagami T, Nakanishi S, Sawa N, Hoshino J, Suwabe T, Katori H, Takemoto F, Hara S, Takaichi K (2005) Significance of minimodeling in dialysis patients with adynamic bone disease. Kidney Int 68:833–839

    Article  PubMed  Google Scholar 

  29. Kamiya N, Ye L, Kobayashi T, Lucas DJ, Mochida Y, Yamauchi M, Kronenberg HM, Feng JQ, Mishina Y (2008) Disruption of BMP signaling in osteoblasts through type IA receptor (BMPRIA) increases bone mass. J Bone Miner Res 23:2007–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375:1729–1736

    Article  PubMed  Google Scholar 

  31. Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S (2010) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25:983–993

    Article  PubMed  Google Scholar 

  32. Zebaze R, Seeman E (2015) Cortical bone: a challenging geography. J Bone Miner Res 30:24–29

    Article  PubMed  Google Scholar 

  33. Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453

    Article  CAS  PubMed  Google Scholar 

  34. Burket J, Gourion-Arsiquaud S, Havill LM, Baker SP, Boskey AL, van der Meulen MC (2011) Microstructure and nanomechanical properties in osteons relate to tissue and animal age. J Biomech 44:277–284

    Article  PubMed  Google Scholar 

  35. Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL (2010) Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone 46:666–672

    Article  CAS  PubMed  Google Scholar 

  36. Augat P, Schorlemmer S (2006) The role of cortical bone and its microstructure in bone strength. Age Ageing 35(Suppl 2):ii27–ii31

  37. Gourion-Arsiquaud S, Boskey AL (2007) Fourier transform infrared and Raman microspectroscopy and microscopic imaging of bone. Curr Opin Orthop 18:499–504

    Article  Google Scholar 

  38. Pelletier MJ (2003) Quantitative analysis using Raman spectrometry. Appl Spectrosc 57:20A–42A

    Article  CAS  PubMed  Google Scholar 

  39. Fuchs RK, Faillace ME, Allen MR, Phipps RJ, Miller LM, Burr DB (2011) Bisphosphonates do not alter the rate of secondary mineralization. Bone 49:701–705

    Article  CAS  PubMed  Google Scholar 

  40. Gamsjaeger S, Buchinger B, Zwettler E, Recker R, Black D, Gasser JA, Eriksen EF, Klaushofer K, Paschalis EP (2011) Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly Zoledronic acid. J Bone Miner Res 26:12–18

    Article  CAS  PubMed  Google Scholar 

  41. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, Cauley J, Black D, Vogt TM (1995) Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 332:767–773

    Article  CAS  PubMed  Google Scholar 

  42. Sato Y, Iwamoto J, Kanoko T, Satoh K (2005) Risedronate therapy for prevention of hip fracture after stroke in elderly women. Neurology 64:811–816

    Article  CAS  PubMed  Google Scholar 

  43. Poole KE, Loveridge N, Rose CM, Warburton EA, Reeve J (2007) A single infusion of zoledronate prevents bone loss after stroke. Stroke 38:1519–1525

    Article  CAS  PubMed  Google Scholar 

  44. Sato Y, Oizumi K, Kuno H, Kaji M (1999) Effect of immobilization upon renal synthesis of 1,25-dihydroxyvitamin D in disabled elderly stroke patients. Bone 24:271–275

    Article  CAS  PubMed  Google Scholar 

  45. Fuchs RK, Shea M, Durski SL, Winters-Stone KM, Widrick J, Snow CM (2007) Individual and combined effects of exercise and alendronate on bone mass and strength in ovariectomized rats. Bone 41:290–296

    Article  CAS  PubMed  Google Scholar 

  46. Yamane H, Sakai A, Mori T, Tanaka S, Moridera K, Nakamura T (2009) The anabolic action of intermittent PTH in combination with cathepsin K inhibitor or alendronate differs depending on the remodeling status in bone in ovariectomized mice. Bone 44:1055–1062

    Article  CAS  PubMed  Google Scholar 

  47. Matsumoto Y, Mikuni-Takagaki Y, Kozai Y, Miyagawa K, Naruse K, Wakao H, Kawamata R, Kashima I, Sakurai T (2009) Prior treatment with vitamin K(2) significantly improves the efficacy of risedronate. Osteoporos Int 20:1863–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

C. Shimada and H. Kawabata provided indispensable technical assistance. This study was supported by Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research to K.N., M.I., and Y.M.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Mikuni-Takagaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

K. Naurse and K. Uchida contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 199 kb)

Supplementary material 2 (PDF 111 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naruse, K., Uchida, K., Suto, M. et al. Alendronate does not prevent long bone fragility in an inactive rat model. J Bone Miner Metab 34, 615–626 (2016). https://doi.org/10.1007/s00774-015-0714-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-015-0714-y

Keywords

Navigation