Skip to main content

Advertisement

Log in

Methotrexate inhibits osteoclastogenesis by decreasing RANKL-induced calcium influx into osteoclast progenitors

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The increasing number of osteoporosis patients is a pressing issue worldwide. Osteoporosis frequently causes fragility fractures, limiting activities of daily life and increasing mortality. Many osteoporosis patients take numerous medicines due to other health issues; thus, it would be preferable if a single medicine could ameliorate osteoporosis and other conditions. Here, we screened 96 randomly selected drugs targeting various diseases for their ability to inhibit differentiation of osteoclasts, which play a pivotal role in development of osteoporosis, and identified methotrexate (MTX), as a potential inhibitor. MTX is currently used to treat sarcomas or leukemic malignancies or auto-inflammatory diseases such as rheumatoid arthritis (RA) through its anti-proliferative and immunosuppressive activities; however, a direct effect on osteoclast differentiation has not been shown. Here, we report that osteoclast formation and expression of osteoclastic genes such as NFATc1 and DC-STAMP, which are induced by the cytokine RANKL, are significantly inhibited by MTX. We found that RANKL-dependent calcium (Ca) influx into osteoclast progenitors was significantly inhibited by MTX. RA patients often develop osteoporosis, and osteoclasts are reportedly required for joint destruction; thus, MTX treatment could have a beneficial effect on RA patients exhibiting high osteoclast activity by preventing both osteoporosis and joint destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Reginster JY, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38:4–9

    Article  Google Scholar 

  2. Jaffe N, Paed D, Farber S, Traggis D, Geiser C, Kim BS, Das L, Frauenberger G, Djerassi I, Cassady JR (1973) Favorable response of metastatic osteogenic sarcoma to pulse high-dose methotrexate with citrovorum rescue and radiation therapy. Cancer 31:1367–1373

    Article  CAS  PubMed  Google Scholar 

  3. Bleyer WA (1978) The clinical pharmacology of methotrexate: new applications of an old drug. Cancer 41:36–51

    Article  CAS  PubMed  Google Scholar 

  4. Cope AP (2008) T cells in rheumatoid arthritis. Arthritis Res Ther 10:1

    Article  Google Scholar 

  5. Kremer JM, Lee JK (1986) The safety and efficacy of the use of methotrexate in long-term therapy for rheumatoid arthritis. Arthritis Rheum 29:822–831

    Article  CAS  PubMed  Google Scholar 

  6. Weinblatt ME, Coblyn JS, Fox DA, Fraser PA, Holdsworth DE, Glass DN, Trentham DE (1985) Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med 28:818–822

    Article  Google Scholar 

  7. Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406

    Article  CAS  PubMed  Google Scholar 

  8. Takayanagi H (2009) Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol 5:667–676

    Article  CAS  PubMed  Google Scholar 

  9. Charles JF, Hsu LY, Niemi EC, Weiss A, Aliprantis AO, Nakamura MC (2012) Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J Clin Invest 3:4592–4605

    Article  Google Scholar 

  10. Oliver SJ, Firestein GS, Arsenault L, Cruz TF, Cheng TP, Banquerigo ML, Boyle DL, Brahn E (2007) Vanadate, an inhibitor of stromelysin and collagenase expression, suppresses collagen induced arthritis. J Rheumatol 34:1802–1809

    CAS  PubMed  Google Scholar 

  11. Aeberli D, Schett G (2013) Cortical remodeling during menopause, rheumatoid arthritis, glucocorticoid and bisphosphonate therapy. Arthritis Res Ther 21:208

    Google Scholar 

  12. Deodhar AA, Woolf AD (1996) Bone mass measurement and bone metabolism in rheumatoid arthritis: a review. Br J Rheumatol 35:309–322

    Article  CAS  PubMed  Google Scholar 

  13. Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, Oike Y, Takeya M, Toyama Y, Suda T (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 1:345–351

    Article  Google Scholar 

  14. Miyauchi Y, Ninomiya K, Miyamoto H, Sakamoto A, Iwasaki R, Hoshi H, Miyamoto K, Hao W, Yoshida S, Morikawa H, Chiba K, Kato S, Tokuhisa T, Saitou M, Toyama Y, Suda T, Miyamoto T (2010) The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis. J Exp Med 12:751–762

    Article  Google Scholar 

  15. Miyauchi Y, Sato Y, Kobayashi T, Yoshida S, Mori T, Kanagawa H, Katsuyama E, Fujie A, Hao W, Miyamoto K, Tando T, Morikawa H, Matsumoto M, Chambon P, Johnson RS, Kato S, Toyama Y, Miyamoto T (2013) HIF1alpha is required for osteoclast activation by estrogen deficiency in postmenopausal osteoporosis. Proc Natl Acad Sci USA 8:16568–16573

    Article  Google Scholar 

  16. Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, Lieben L, Torrekens S, Moermans K, Vanden Bosch A, Bouillon R, Nillius B, Carmeliet G (2008) TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab 8:257–265

    Article  CAS  PubMed  Google Scholar 

  17. Masuyama R, Mizuno A, Komori H, Kajiya H, Uekawa A, Kitaura H, Okabe K, Ohyama K, Komori T (2012) Calcium/calmodulin-signaling supports TRPV4 activation in osteoclasts and regulates bone mass. J Bone Miner Res 27:1708–1721

    Article  CAS  PubMed  Google Scholar 

  18. Frith JC, Monkkonen J, Blackburn GM, Russell RG, Rogers MJ (1997) Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5′-(beta, gamma-dichloromethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res 12:1358–1367

    Article  CAS  PubMed  Google Scholar 

  19. Frith JC, Monkkonen J, Auriola S, Monkkonen H, Rogers MJ (2001) The molecular mechanism of action of the antiresorptive and antiinflammatory drug clodronate: evidence for the formation in vivo of a metabolite that inhibits bone resorption and causes osteoclast and macrophage apoptosis. Arthritis Rheum 44:2201–2210

    Article  CAS  PubMed  Google Scholar 

  20. Noh AL, Park H, Zheng T, Ha HI, Yim M (2011) L-type Ca(2+) channel agonist inhibits RANKL-induced osteoclast formation via NFATc1 down-regulation. Life Sci Aug 89:159–164

    Article  CAS  Google Scholar 

  21. Hanayama R, Shimizu H, Nakagami H, Osako MK, Makino H, Kunugiza Y, Tomita T, Tsukamoto I, Yoshikawa H, Rakugi H, Morishita R (2009) Fluvastatin improves osteoporosis in fructose-fed insulin resistant model rats through blockade of the classical mevalonate pathway and antioxidant action. Int J Mol Med 23:581–588

    CAS  PubMed  Google Scholar 

  22. Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T, Morioka H, Chiba K, Toyama Y, Yoshimura A (2011) IL-1beta and TNFalpha-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int Immunol 23:701–712

    Article  CAS  PubMed  Google Scholar 

  23. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:459–469

    Google Scholar 

  24. King TJ, Georgiou KR, Cool JC, Scherer MA, Ang ES, Foster BK, Xu J, Xian CJ (2012) Methotrexate chemotherapy promotes osteoclast formation in the long bone of rats via increased pro-inflammatory cytokines and enhanced NF-κB activation. Am J Pathol 181:121–129

    Article  CAS  PubMed  Google Scholar 

  25. Mediero A, Perez-Aso M, Wilder T, Cronstein BN (2014) Methotrexate prevents wear particle-induced inflammatory osteolysis via activation of the adenosine A2A receptor. Arthritis Rheumatol (in press)

  26. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402:304–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

T. Miyamoto was supported by a Grant-in-aid for Scientific Research Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Miyamoto.

Ethics declarations

The authors state that they have no conflict of interest.

Additional information

H. Kanagawa, R. Masuyama, M. Morita and Y. Sato contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 261 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanagawa, H., Masuyama, R., Morita, M. et al. Methotrexate inhibits osteoclastogenesis by decreasing RANKL-induced calcium influx into osteoclast progenitors . J Bone Miner Metab 34, 526–531 (2016). https://doi.org/10.1007/s00774-015-0702-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-015-0702-2

Keywords

Navigation