Skip to main content
Log in

Paraspinale Nahinfrarotspektroskopie zur indirekten Überwachung der Rückenmarkoxygenierung

Experimentelle und klinische Daten

Indirect monitoring of spinal cord oxygenation by paraspinal near-infrared spectroscopy

Experimental and clinical data

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

In der Therapie des thorakoabdominellen Aortenaneurysmas konkurriert der offen-chirurgische Ersatz zunehmend mit der endovaskulären Stentgraftimplantation. Die schwerwiegendste Komplikation beider Verfahren ist der ischämische Rückenmarkschaden, der oft eine permanente Paraplegie nach sich zieht. Methoden zur nichtinvasiven Echtzeitüberwachung der Rückenmarkperfusion während und nach ausgedehnten Eingriffen an der Aorta sind im klinischen Alltag nicht etabliert. Die nichtinvasive Methode der Kollateralnetzwerk-Nahinfrarotspektroskopie (cnNIRS) soll peri- und postoperativ Rückschlüsse auf die Rückenmarkoxygenierung in Echtzeit ermöglichen. Experimentelle und klinische Studien konnten zeigen, dass die lumbale cnNIRS direkt proportional und unmittelbar auf eine Ischämie und Reperfusion nach Aortenklemmung und distaler Perfusion reagierten. Die hochthorakale Optodenplatzierung hingegen zeigte keine relevanten Änderungen und scheint daher aktuell klinisch nicht sinnvoll. Lumbales cnNIRS ist technisch einfach anzuwenden. Es konnte ein Zusammenhang zwischen reduzierten Werten und einem schlechteren postoperativen Ergebnis hinsichtlich Paraplegie und -parese nach Eingriffen an der thorakoabdominellen Aorta gezeigt werden. Die maximale Reduktion der Messgröße, angegeben in Prozent des individuellen Ausgangswerts, beträgt 25 bis 35 %. Für die endovaskuläre Therapie konnten bislang keine signifikanten Änderungen nachgewiesen werden und zurzeit existieren noch keine ausreichenden Daten, um verlässliche cnNIRS-Referenzbereiche aufzuzeigen. Lumbales cnNIRS ist klinisch nutzbar und eine vielversprechende Methode zur Echtzeitüberwachung der spinalen Oxygenierung während und nach Operationen an der thorakoabdominellen Aorta. Eine Klärung, ob und inwieweit cnNIRS-Änderungen während der endovaskulären Therapie abbildet, steht derzeit noch aus.

Abstract

Thoracoabdominal aortic aneurysm repair can be performed by an open surgical approach and by endovascular stent graft implantation. The most devastating complication is ischemic spinal cord injury, which can occur in both procedures and often results in permanent paraplegia. Methods for non-invasive real-time monitoring of spinal cord perfusion during and after extensive aortic repair are not routinely used in current clinical practice. The new method of collateral network near infrared spectroscopy (cnNIRS) is a non-invasive modality to enable real-time perioperative and postoperative monitoring of spinal cord oxygenation. Experimental and clinical studies have shown that lumbar cnNIRS immediately reacts to ischemia and reperfusion after aortic cross-clamping and during distal perfusion. Optode placement at the upper thoracic level did not show any relevant changes and therefore does not currently appear to be clinically useful. Lumbar cnNIRS is technically simple to use and it has been demonstrated that reduced lumbar cnNIRS values correlate with a worse postoperative outcome regarding paraplegia and paraparesis after open thoracoabdominal aortic repair. The maximum reduction expressed as a percentage of the individual baseline value ranges from 25% to 35%. To date no significant changes were detected for endovascular aortic repair. Sufficient data demonstrating reliable cnNIRS reference values and ranges are needed. Nevertheless, lumbar cnNIRS is clinically feasible and a promising method for non-invasive real-time monitoring of spinal cord oxygenation during and after open thoracoabdominal aortic repair. Further clinical and experimental studies are necessary to clarify whether and to what extent cnNIRS can depict changes during endovascular aortic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Koeppel TA, Greiner A, Jacobs MJ (2010) DGG Leitlinie – Thorakale und Thorakoabdominelle Aortenaneurysmen. Europäisches Gefäßzentrum Aachen-Maastricht, Aachen

    Google Scholar 

  2. Kalder J, Kotelis D, Jacobs MJ (2016) Thorakoabdominelles Aortenaneurysma. Gefäßchirurgie 21(2):115–128

    Article  Google Scholar 

  3. Bickerstaff LK, Pairolero PC, Hollier LH, Melton LJ, Van Peenen HJ, Cherry KJ, Joyce JW, Lie JT (1982) Thoracic aortic aneurysms: a population-based study. Surgery 92(6):1103–1108

    CAS  PubMed  Google Scholar 

  4. Coselli JS (2013) Update on repairs of the thoracoabdominal aorta. Tex Heart Inst J 40(5):572–574

    PubMed  PubMed Central  Google Scholar 

  5. Wong DR, Parenti JL, Green SY, Chowdhary V, Liao JM, Zarda S, Huh J, LeMaire SA, Coselli JS (2011) Open repair of thoracoabdominal aortic aneurysm in the modern surgical era: contemporary outcomes in 509 patients. J Am Coll Surg 212(4):569–579 (discussion 579–581)

    Article  PubMed  Google Scholar 

  6. Coselli JS, LeMaire SA, Preventza O, de la Cruz KI, Cooley DA, Price MD, Stolz AP, Green SY, Arredondo CN, Rosengart TK (2016) Outcomes of 3309 thoracoabdominal aortic aneurysm repairs. J Thorac Cardiovasc Surg 151(5):1323–1337

    Article  PubMed  Google Scholar 

  7. Ferrer C, Cao P, De Rango P, Tshomba Y, Verzini F, Melissano G, Coscarella C, Chiesa R (2016) A propensity-matched comparison for endovascular and open repair of thoracoabdominal aortic aneurysms. J Vasc Surg 63(5):1201–1207

    Article  PubMed  Google Scholar 

  8. Greenberg RK, Lu Q, Roselli EE, Svensson LG, Moon MC, Hernandez AV, Dowdall J, Cury M, Francis C, Pfaff K, Clair DG, Ouriel K, Lytle BW (2008) Contemporary analysis of descending thoracic and thoracoabdominal aneurysm repair: a comparison of endovascular and open techniques. Circulation 118(8):808–817

    Article  PubMed  Google Scholar 

  9. Greenberg RK, Lytle B (2008) Endovascular repair of thoracoabdominal aneurysms. Circulation 117(17):2288–2296

    Article  PubMed  Google Scholar 

  10. Katsargyris A, Oikonomou K, Kouvelos G, Renner H, Ritter W, Verhoeven EL (2015) Spinal cord ischemia after endovascular repair of thoracoabdominal aortic aneurysms with fenestrated and branched stent grafts. J Vasc Surg 62(6):1450–1456

    Article  PubMed  Google Scholar 

  11. Panthee N, Ono M (2015) Spinal cord injury following thoracic and thoracoabdominal aortic repairs. Asian Cardiovasc Thorac Ann 23(2):235–246

    Article  PubMed  Google Scholar 

  12. Etz CD, Luehr M, Kari FA, Bodian CA, Smego D, Plestis KA, Griepp RB (2008) Paraplegia after extensive thoracic and thoracoabdominal aortic aneurysm repair: Does critical spinal cord ischemia occur postoperatively? J Thorac Cardiovasc Surg 135(2):324–330

    Article  PubMed  Google Scholar 

  13. Pillai JB, Pellet Y, Panagopoulos G, Sadek MA, Abjigitova D, Weiss D, Plestis KA (2013) Somatosensory-evoked potential-guided intercostal artery reimplantation in thoracoabdominal aortic aneurysm surgery. Innovations (Phila) 8(4):302–306

    Article  Google Scholar 

  14. Etz CD, Di Luozzo G, Zoli S, Lazala R, Plestis KA, Bodian CA, Griepp RB (2009) Direct spinal cord perfusion pressure monitoring in extensive distal aortic aneurysm repair. Ann Thorac Surg 87(6):1764–1773 (discussion 1773–1764)

    Article  PubMed  Google Scholar 

  15. Brady K, Joshi B, Zweifel C, Smielewski P, Czosnyka M, Easley RB, Hogue CW Jr. (2010) Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke 41(9):1951–1956

    Article  PubMed  Google Scholar 

  16. Zheng F, Sheinberg R, Yee MS, Ono M, Zheng Y, Hogue CW (2013) Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review. Anesth Analg 116(3):663–676

    Article  PubMed  Google Scholar 

  17. Obrig H (2002) Nahinfrarotspektroskopie des Gehirns. Habilitationsschrift. Charité der Humboldt-Universität zu Berlin, Berlin

    Google Scholar 

  18. Aldrete JA, Mushin AU, Zapata JC, Ghaly R (1998) Skin to cervical epidural space distances as read from magnetic resonance imaging films: consideration of the „hump pad.“. J Clin Anesth 10(4):309–313

    Article  CAS  PubMed  Google Scholar 

  19. Etz CD, von Aspern K, Gudehus S, Luehr M, Girrbach FF, Ender J, Borger M, Mohr FW (2013) Near-infrared spectroscopy monitoring of the collateral network prior to, during, and after thoracoabdominal aortic repair: a pilot study. Eur J Vasc Endovasc Surg 46(6):651–656

    Article  CAS  PubMed  Google Scholar 

  20. Luehr M, von Aspern K, Etz CD (2016) Limitations of direct regional spinal cord monitoring using near-infrared spectroscopy: indirect paraspinal collateral network surveillance is the answer! Ann Thorac Surg 101(3):1238–1239

    Article  PubMed  Google Scholar 

  21. Etz CD, Homann TM, Plestis KA, Zhang N, Luehr M, Weisz DJ, Kleinman G, Griepp RB (2007) Spinal cord perfusion after extensive segmental artery sacrifice: Can paraplegia be prevented? Eur J Cardiothorac Surg 31(4):643–648

    Article  PubMed  Google Scholar 

  22. Etz CD, Kari FA, Mueller CS, Brenner RM, Lin HM, Griepp RB (2011) The collateral network concept: remodeling of the arterial collateral network after experimental segmental artery sacrifice. J Thorac Cardiovasc Surg 141(4):1029–1036

    Article  PubMed  PubMed Central  Google Scholar 

  23. Etz CD, Kari FA, Mueller CS, Silovitz D, Brenner RM, Lin HM, Griepp RB (2011) The collateral network concept: a reassessment of the anatomy of spinal cord perfusion. J Thorac Cardiovasc Surg 141(4):1020–1028

    Article  PubMed  PubMed Central  Google Scholar 

  24. von Aspern K, Haunschild J, Hoyer A, Luehr M, Bakhtiary F, Misfeld M, Mohr FW, Etz CD (2016) Non-invasive spinal cord oxygenation monitoring: validating collateral network near-infrared spectroscopy for thoracoabdominal aortic aneurysm repairdagger. Eur J Cardiothorac Surg 50(4):675–683. doi:10.1093/ejcts/ezw063

    Article  Google Scholar 

  25. Von Aspern K, Luehr M, Mohr FW, Etz CD (2015) Spinal cord protection in open- and endovascular thoracoabdominal aortic aneurysm repair: critical review of current concepts and future perspectives. J Cardiovasc Surg (Torino) 56(5):745–749

    Google Scholar 

  26. Boezeman RP, van Dongen EP, Morshuis WJ, Sonker U, Boezeman EH, Waanders FG, de Vries JP (2015) Spinal near-infrared spectroscopy measurements during and after thoracoabdominal aortic aneurysm repair: a pilot study. Ann Thorac Surg 99(4):1267–1274

    Article  PubMed  Google Scholar 

  27. Kunihara T, Shiiya N, Matsuzaki K, Sata F, Matsui Y (2008) Near-infrared spectrophotometry is useful to detect the beneficial pharmacological effects of alprostadil on spinal cord deoxygenation. Ann Thorac Cardiovasc Surg 14(6):376–381

    PubMed  Google Scholar 

  28. Luehr M, Mohr FW, Etz CD (2015) Indirect neuromonitoring of the spinal cord by near-infrared spectroscopy of the paraspinous thoracic and lumbar muscles in aortic surgery. Thorac Cardiovasc Surg 64(04):333–335. doi:10.1055/s-0035-1552579

    Article  PubMed  Google Scholar 

  29. Suehiro K, Funao T, Fujimoto Y, Mukai A, Nakamura M, Nishikawa K (2016) Transcutaneous near-infrared spectroscopy for monitoring spinal cord ischemia: an experimental study in swine. J Clin Monit Comput. doi:10.1007/s10877-016-9931-8

    Google Scholar 

  30. Moerman A, Van Herzeele I, Vanpeteghem C, Vermassen F, Francois K, Wouters P (2011) Near-infrared spectroscopy for monitoring spinal cord ischemia during hybrid thoracoabdominal aortic aneurysm repair. J Endovasc Ther 18(1):91–95

    Article  PubMed  Google Scholar 

  31. Etz CD, Debus ES, Mohr FW, Kolbel T (2015) First-in-man endovascular preconditioning of the paraspinal collateral network by segmental artery coil embolization to prevent ischemic spinal cord injury. J Thorac Cardiovasc Surg 149(4):1074–1079

    Article  PubMed  Google Scholar 

  32. Luehr M, Salameh A, Haunschild J, Hoyer A, Girrbach FF, von Aspern K, Dhein S, Mohr FW, Etz CD (2014) Minimally invasive segmental artery coil embolization for preconditioning of the spinal cord collateral network before one-stage descending and thoracoabdominal aneurysm repair. Innovations (Phila) 9(1):60–65

    Article  Google Scholar 

  33. Boezeman RP, Moll FL, Unlu C, de Vries JP (2016) Systematic review of clinical applications of monitoring muscle tissue oxygenation with near-infrared spectroscopy in vascular disease. Microvasc Res 104:11–22

    Article  PubMed  Google Scholar 

  34. Luehr M et al (2014) Modern temperature management in aortic surgery. Eur J Cardiothorac Surg 45(1):27–39. doi:10.1093/ejcts/ezt154

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. von Aspern.

Ethics declarations

Interessenkonflikt

K. von Aspern und C.D. Etz geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Aspern, K., Bakhtiary, F., Misfeld, M. et al. Paraspinale Nahinfrarotspektroskopie zur indirekten Überwachung der Rückenmarkoxygenierung. Gefässchirurgie 22, 102–109 (2017). https://doi.org/10.1007/s00772-017-0244-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-017-0244-0

Schlüsselwörter

Keywords

Navigation