Skip to main content

Advertisement

Log in

Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer-induced cachexia progression in Walker-256 tumor-bearing rats

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate (1) the impact of tumor growth on homocysteine (Hcy) metabolism, liver oxidative stress and cancer cachexia and, (2) the potential benefits of creatine supplementation in Walker-256 tumor-bearing rats. Three experiments were conducted. First, rats were killed on days 5 (D5), 10 (D10) and 14 (D14) after tumor implantation. In experiment 2, rats were randomly assigned to three groups designated as control (C), tumor-bearing (T) and tumor-bearing supplemented with creatine (TCr). A life span experiment was conducted as the third experiment. Creatine was supplied in drinking water for 21 days (8 g/L) in all cases. Tumor implantation consisted of a suspension of Walker-256 cells (8.0 × 107 cells in 0.5 mL of PBS). The progressive increase (P < 0.05) in tumor mass coincided with a progressively lower body weight and higher hepatic oxidative stress; plasma Hcy concentration was 80 % higher (P < 0.05) by 10 days of tumor implantation. Impaired Hcy metabolism was evidenced by decreased hepatic betaine-homocysteine methyltransferase (Bhmt), glycine N-methyltransferase (Gnmt) and cystathionine beta synthase (CBS) gene expression. In contrast, creatine supplementation promoted a 28 % reduction of tumor weight (P < 0.05). Plasma Hcy (C 6.1 ± 0.6, T 10.3 ± 1.5, TCr 6.3 ± 0.9, µmol/L) and hepatic oxidative stress were lower in the TCr group compared to T. Creatine supplementation was unable to decrease Hcy concentration and to increase SAM/SAH ratio in tumor tissue. These data suggest that creatine effects on hepatic impaired Hcy metabolism promoted by tumor cell inoculation are responsible to decrease plasma Hcy in tumor-bearing rats. In conclusion, Walker-256 tumor growth is associated with progressive hyperhomocysteinemia, body weight loss and liver oxidative stress in rats. Creatine supplementation, however, prevented these tumor-associated perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AOPP:

Advanced oxidation protein products

AGAT:

Arginineglycine amidinotransferase

ALT:

Alanine aminotransferase

Bhmt:

Betaine-homocysteine S-methyltransferase

Cbs:

Cystathionine beta synthase

CK:

Creatine kinase

Gnmt:

Glycine N-methyltransferase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

Hcy:

Homocysteine

HHcy:

Hyperhomocysteinemia

Mat1a:

Methionine adenosyltransferase I alpha

MDA:

Malondialdehyde

Mtrr:

5-methyltetrahydrofolate-homocysteine methyltransferase reductase

Pemt:

Phosphatidylethanolamine N-methyltransferase

SAH:

S-adenosylhomocysteine

SAM:

S-adenosylmethionine

SOD:

Superoxide dismutase

References

  • Akoglu B, Milovic V, Caspary WF, Faust D (2004) Hyperproliferation of homocysteine-treated colon cancer cells is reversed by folate and 5-methyltetrahydrofolate. Eur J Nutr 43:93–99. doi:10.1007/s00394-004-0446-6

    Article  CAS  PubMed  Google Scholar 

  • Chiang FF, Wang HM, Lan YC, Yang MH, Huang SC, Huang YC (2014) High homocysteine is associated with increased risk of colorectal cancer independently of oxidative stress and antioxidant capacities. Clin Nutr 33:1054–1060. doi:10.1016/j.clnu.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  • Collinsova M, Strakova J, Jiracek J, Garrow TA (2006) Inhibition of betaine-homocysteine S-methyltransferase in mice causes hyperhomocysteinemia. J Nutr 136:1493–1497

    CAS  PubMed  Google Scholar 

  • de Campos-Ferraz PL, Andrade I, das Neves W, Hangai I, Alves CR, Lancha AH Jr (2014) An overview of amines as nutritional supplements to counteract cancer cachexia. J Cachexia Sarcopenia Muscle 5:105–110. doi:10.1007/s13539-014-0138-x

    Article  PubMed  PubMed Central  Google Scholar 

  • DebRoy S, Kramarenko II, Ghose S, Oleinik NV, Krupenko SA, Krupenko NI (2013) A novel tumor suppressor function of glycine N-methyltransferase is independent of its catalytic activity but requires nuclear localization. PLoS One 30(8):e70062. doi:10.1371/journal.pone.0070062

    Article  Google Scholar 

  • Deminice R, Portari GV, Vannucchi H, Jordao AA (2009) Effects of creatine supplementation on homocysteine levels and lipid peroxidation in rats. Br J Nutr 102:110–116. doi:10.1017/S0007114508162985

    Article  CAS  PubMed  Google Scholar 

  • Deminice R, Vannucchi H, Simo˜es-Ambrosio LM, Jordao AA (2011a) Creatine supplementation reduces increased homocysteine concentration induced by acute exercise in rats. Eur J Appl Physiol 111:2663–2670. doi:10.1007/s00421-011-1891-6

    Article  CAS  PubMed  Google Scholar 

  • Deminice R, da Silva RP, Lamarre SG, Brown C, Furey GN, McCarter SA, Jordao AA, Kelly KB, King-Jones K, Jacobs RL, Brosnan ME (2011b) Creatine supplementation prevents the accumulation of fat in the livers of rats fed a high-fat diet. J Nutr 141:1799–1804. doi:10.3945/jn.111.144857

    Article  CAS  PubMed  Google Scholar 

  • Deminice R, Castro GSF, Francisco LV, Silva LECM, Cardoso JFR, Frajacomo FT, Teodoro BG, Silveira LR, Jordao AA (2015) Creatine supplementation prevents fatty liver in rats fed choline-deficient diet: a burden of one-carbon and fatty acid metabolism. J Nutr Biochem 26:391–397. doi:10.1016/j.jnutbio.2014.11.014

    Article  CAS  PubMed  Google Scholar 

  • Edison EE, Brosnan ME, Meyer C, Brosnan JT (2007) Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo. Am J Physiol Renal Physiol 293:F1799–F1804

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver and muscle. Free Rad Biol Med 10:93–100

    Article  CAS  PubMed  Google Scholar 

  • Gualano B, Roschel H, Lancha-Jr AH, Brightbill CE, Rawson ES (2012) In sickness and in health: the widespread application of creatine supplementation. Amino Acids 43:519–529. doi:10.1007/s00726-011-1132-7

    Article  CAS  PubMed  Google Scholar 

  • Guarnier FA, Cecchini AL, Suzukawa AA, Maragno AL, Simão AN, Gomes MD, Cecchini R (2010) Time course of skeletal muscle loss and oxidative stress in rats with Walker 256 solid tumor. Muscle Nerve 42:950–958. doi:10.1002/mus.21798

    Article  CAS  PubMed  Google Scholar 

  • Harris RC, Soderlund K, Hultman E (1992) Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clinical science 83(3):367–374

    Article  CAS  PubMed  Google Scholar 

  • Hultman E, Söderlund K, Timmons JA, Cederblad G, Greenhaff PL (1996) Muscle creatine loading in men. J Appl Physiol (1985) 81(1):232–237

    CAS  Google Scholar 

  • Koyama S, Hata S, Witt CC, Ono Y, Lerche S, Ojima K, Chiba T, Doi N, Kitamura F, Tanaka K, Abe K, Witt SH, Rybin V, Gasch A, Franz T, Labeit S, Sorimachi H (2008) Muscle RING-finger protein-1 (MuRF1) as a connector of muscle energy metabolism and protein synthesis. J Mol Biol 376:1224–1236. doi:10.1016/j.jmb.2007.11.049

    Article  CAS  PubMed  Google Scholar 

  • Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290:47–52

    Article  CAS  PubMed  Google Scholar 

  • Marklund SA, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Chantar ML, Vázquez-Chantada M, Ariz U, Martínez N, Varela M, Luka Z, Capdevila A, Rodríguez J, Aransay AM, Matthiesen R, Yang H, Calvisi DF, Esteller M, Fraga M, Lu SC, Wagner C, Mato JM (2008) Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology 47:1191–1199. doi:10.1002/hep.22159

    Article  PubMed  Google Scholar 

  • Miller JW, Beresford SA, Neuhouser ML, Cheng TY, Song X, Brown EC, Zheng Y, Rodriguez B, Green R, Ulrich CM (2013) Homocysteine, cysteine, and risk of incident colorectal cancer in the Women’s Health Initiative observational cohort. Am J Clin Nutr 97:827–834. doi:10.3945/ajcn.112.049932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra S, Bera S, SinhaRoy S, Ghoshal S, Ray S, Basu A, Schlattner U, Wallimann T, Ray M (2008) Progressive decrease of phosphocreatine, creatine and creatine kinase in skeletal muscle upon transformation to sarcoma. FEBS J 275:3236–3247. doi:10.1111/j.1742-4658.2008.06475.x

    Article  CAS  PubMed  Google Scholar 

  • Patra S, Ghosh A, Roy SS, Bera S, Das M, Talukdar D, Ray S, Wallimann T, Ray M (2012) A short review on creatine-creatine kinase system in relation to cancer and some experimental results on creatine as adjuvant in cancer therapy. Amino Acids 42:2319–2330. doi:10.1007/s00726-011-0974-3

    Article  CAS  PubMed  Google Scholar 

  • Pryzimirska TV, Pogribny IP, Chekhun VF (2007) The impact of tumor growth on plasma homocysteine levels and tissue-specific DNA methylation in Walker-256 tumor-bearing rats. Exp Oncol 29:262–266

    CAS  PubMed  Google Scholar 

  • Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1:3159–3165

    Article  CAS  PubMed  Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616. doi:10.1016/j.freeradbiomed.2010.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakkas GK, Schambelan M, Mulligan K (2009) Can the use of creatine supplementation attenuate muscle loss in cachexia and wasting? Curr Opin Clin Nutr Metab Care 12:623–627. doi:10.1097/MCO.0b013e328331de63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sestili P, Martinelli C, Colombo E, Barbieri E, Potenza L, Sartini S, Fimognari C (2011) Creatine as an antioxidant. Amino Acids 40:1385–1396. doi:10.1007/s00726-011-0875-5

    Article  CAS  PubMed  Google Scholar 

  • Spirlandeli AL, Deminice R, Jordao AA (2014) Plasma malondialdehyde as biomarker of lipid peroxidation: effects of acute exercise. Int J Sports Med 35:14–18. doi:10.1055/s-0033-1345132

    CAS  PubMed  Google Scholar 

  • Stead LM, Brosnan JT, Brosnan ME, Vance DE, Jacobs RL (2006) Is it time to reevaluate methyl balance in humans? Am J Clin Nutr 83:5–10

    CAS  PubMed  Google Scholar 

  • Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577

    Article  CAS  PubMed  Google Scholar 

  • Sun CF, Haven TR, Wu TL, Tsao KC, Wu JT (2002) Serum total homocysteine increases with the rapid proliferation rate of tumor cells and decline upon cell death: a potential new tumor marker. Clin Chim Acta 321:55–62

    Article  CAS  PubMed  Google Scholar 

  • Teng Y-W, Mehedint MG, Garrow TA, Zeisel SH (2011) Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J Biol Chem 286:36258–36267. doi:10.1074/jbc.M111.265348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Pilsum JF, Taylor D, Zakis B, McCormick P (1970) Simplified assay for transamidinase activities of rat kidney homogenates. Anal Biochem 35:277–286

    Article  PubMed  Google Scholar 

  • Varela-Rey M, Martínez-López N, Fernández-Ramos D, Embade N, Calvisi DF, Woodhoo A, Rodríguez J, Fraga MF, Julve J, Rodríguez-Millán E, Frades I, Torres L, Luka Z, Wagner C, Esteller M, Lu SC, Martínez-Chantar ML, Mato JM (2010) Fatty liver and fibrosis in glycine N-methyltransferase knockout mice is prevented by nicotinamide. Hepatology 52:105–114. doi:10.1002/hep.23639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40:1271–1296. doi:10.1007/s00726-011-0877-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss N (2005) Mechanisms of increased vascular oxidant stress in hyperhomocysteinemia and its impact on endothelial function. Curr Drug Metab 6:27–36

    Article  CAS  PubMed  Google Scholar 

  • Williams A, Sun X, Fischer JE, Hasselgren PO (1999) The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery 126:744–749

    Article  CAS  PubMed  Google Scholar 

  • Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P, Descamps-Latscha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–1313

    Article  CAS  PubMed  Google Scholar 

  • Wu LL, Wu JT (2002) Hyperhomocysteinemia is a risk factor for cancer and a new potential tumor marker. Clin Chim Acta 322:21–28

    Article  CAS  PubMed  Google Scholar 

  • Yamashita EK, Teixeira BM, Yoshihara RN, Kuniyoshi RK, Alves BC, Gehrke FS, Vilas-Bôas VA, Correia JA, Azzalis LA, Junqueira VB, Pereira EC, Fonseca FL (2014) Systemic chemotherapy interferes in homocysteine metabolism in breast cancer patients. J Clin Lab Anal 28:157–162. doi:10.1002/jcla.21660

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by Brazilian grants from Fapesp (Fundação de Amparo a Pesquisa do estado de São Paulo), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior (Capes: 88881.068035/2014-01); and Canadian grants from (Canadian Institutes of Health Research and the Research Development Corporation of Newfoundland and Labrador).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Deminice.

Ethics declarations

Conflict of interest

All authors declared that there is no potential conflict of interests regarding this article.

Additional information

Handling Editor: T. Wallimann and R. Harris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deminice, R., Cella, P.S., Padilha, C.S. et al. Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer-induced cachexia progression in Walker-256 tumor-bearing rats. Amino Acids 48, 2015–2024 (2016). https://doi.org/10.1007/s00726-016-2172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2172-9

Keywords

Navigation