Skip to main content

Advertisement

Log in

Targeting rho guanine nucleotide exchange factor ARHGEF5/TIM with auto-inhibitory peptides in human breast cancer

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The oncogenic protein ARHGEF5/TIM has long been known to express specifically in human breast cancer and other tumors, which is an important member of Rho guanine nucleotide exchange factors that activate Rho-family GTPases by promoting GTP/GDP exchange. The activation capability of TIM is auto-inhibited by a putative helix N-terminal to Dbl homology (DH) domain, which is stabilized by intramolecular interaction of Src homology 3 domain with a poly-proline sequence that locates between the helix and DH domain. Here, we attempted to target TIM DH domain using the modified versions of its auto-inhibitory helix. In the procedure, bioinformatics techniques were used to investigate the intramolecular interaction of DH domain with auto-inhibitory helix and, based on obtained knowledge, to optimize physicochemical property and structural conformation for the helix. We also performed affinity assay to determine the binding strength of modified peptides to DH domain. Consequently, two modified peptides, namely, DALYEEYNLVV and EVLYEEYQLVV were found as good binders of DH domain with dissociation constants K d of 0.35 and 2 µM, respectively. Structural analysis revealed that the charge neutralization and electrostatic interaction confer additional stability for these two peptide complexes with DH domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barrio-Real L, Kazanietz MG (2012) Rho GEFs and cancer: linking gene expression and metastatic dissemination. Sci Signal 5:pe43

  • Baysal C, Meirovitch H (1997) Determination of the stable microstates of a peptide from NOE distance constraints and optimization of atomic solvation parameters. J Am Chem Soc 114:4805–4818

    Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bouquier N, Fromont S, Zeeh JC, Auziol C, Larrousse P, Robert B, Zeghouf M, Cherfils J, Debant A, Schmidt S (2009) Aptamer-derived peptides as potent inhibitors of the oncogenic RhoGEF Tgat. Chem Biol 16:391–400

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80–87

    Article  CAS  PubMed  Google Scholar 

  • Chhatriwala MK, Betts L, Worthylake DK, Sondek J (2007) The DH and PH domains of Trio coordinately engage Rho GTPases for their efficient activation. J Mol Biol 368:1307–1320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald and N.log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Debily MA, Camarca A, Ciullo M, Mayer C, Marhomy S, Ba I, Jalil A, Anzisi A, Guardiola J, Piatier-Tonneau D (2004) Expression and molecular characterization of alternative transcripts of the ARHGEF5/TIM oncogene specific for human breast cancer. Hum Mol Genet 13:323–334

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    CAS  PubMed  Google Scholar 

  • He P, Tan DL, Liu HX, Lv FL, Wu W (2015) The auto-inhibitory state of Rho guanine nucleotide exchange factor ARHGEF5 can be relieved by targeting its SH3 domain with rationally designed peptide aptamers. Biochimie 111:10–18

    Article  CAS  PubMed  Google Scholar 

  • Hou T, Chen K, McLaughlin WA, Lu B, Wang W (2006) Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. PLoS Comput Biol 2:e1

    Article  PubMed Central  PubMed  Google Scholar 

  • Hubbard TJ, Ailey B, Brenner SE, Murzin AG, Chothia C (1999) SCOP: a structural classification of proteins database. Nucleic Acids Res 27:254–256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  PubMed  Google Scholar 

  • Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  PubMed  Google Scholar 

  • Kortemme T, Kim DE, Baker D (2004) Computational alanine scanning of protein–protein interfaces. Sci STKE 2004:pl2

  • Kuroiwa M, Oneyama C, Nada S, Okada M (2011) The guanine nucleotide exchange factor Arhgef5 plays crucial roles in Src-induced podosome formation. J Cell Sci 124:1726–1738

    Article  CAS  PubMed  Google Scholar 

  • Liu HM, Li LJ, Guo J, Yang ZJ, Yang X, Qi RP, Cao W (2014) Evolution of high-affinity peptide probes to detect the SH3 domain of cancer biomarker BCR-ABL. Int J Pept Res Ther 20:201–208

    Article  CAS  Google Scholar 

  • London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O (2011) Rosetta FlexPepDock web server—high resolution modeling of peptide–protein interactions. Nucleic Acids Res 39:249–253

    Article  Google Scholar 

  • Maupetit J, Derreumaux P, Tuffery P (2009) PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Res 37:W498–W503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics 30:1771–1773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6:167–180

    Article  CAS  PubMed  Google Scholar 

  • Ryckaert J, Ciccotti G, Berendsen HJC (1977) Numerical-integration of Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Schiller MR, Chakrabarti K, King GF, Schiller NI, Eipper BA, Maciejewski MW (2006) Regulation of RhoGEF activity by intramolecular and intermolecular SH3 domain interactions. J Biol Chem 281:18774–18786

    Article  CAS  PubMed  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uniprot C (2010) Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 39:D214–D219

    Google Scholar 

  • Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56

    Article  CAS  PubMed  Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng 8:127–134

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Honig B (2001) Extending the accuracy limits of prediction of side-chain conformations. J Mol Biol 311:421–430

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Zhang S, He P, Wang C, Huang J, Zhou P (2015) Self-binding peptides: folding or binding? J Chem Inf Model (Epub ahead of print)

  • Yohe ME, Rossman KL, Gardner OS, Karnoub AE, Snyder JT, Gershburg S, Graves LM, Der CJ, Sondek J (2007) Auto-inhibition of the Dbl family protein Tim by an N-terminal helical motif. J Biol Chem 282:13813–13823

    Article  CAS  PubMed  Google Scholar 

  • Yohe ME, Rossman K, Sondek J (2008) Role of the C-terminal SH3 domain and N-terminal tyrosine phosphorylation in regulation of Tim and related Dbl-family proteins. Biochemistry 47:6827–6839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou P, Huang J, Tian F (2012) Specific noncovalent interactions at protein–ligand interface: implications for rational drug design. Curr Med Chem 19:226–238

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Wang C, Ren Y, Yang C, Tian F (2013) Computational peptidology: a new and promising approach to therapeutic peptide design. Curr Med Chem 20:1985–1996

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 30801118, 81172520, 81202087, 81202088, 81472462 and 81402176), the Natural Science Foundation of Shanghai Municipal Science and Technology Commission (No. 12ZR1446400), the Technology Innovation Act Plan of Shanghai Municipal Science and Technology Commission (Nos. 14411950200 and 14411950201), the Wenzhou Science and Technology Bureau (No. Y20130090), the Natural Science Foundation of Jiangsu Province (No. BK20140288), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 14KJB320011), and the Joint Research Project of the Emerging Cutting-edge Technology of Shanghai Shen-kang Hospital Development Center (No. SHDC12014103).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqu Hu.

Additional information

Handling Editor: M. S. Palma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, O., Wu, D., Xie, F. et al. Targeting rho guanine nucleotide exchange factor ARHGEF5/TIM with auto-inhibitory peptides in human breast cancer. Amino Acids 47, 1239–1246 (2015). https://doi.org/10.1007/s00726-015-1950-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1950-0

Keywords

Navigation