Skip to main content
Log in

Evolution of High-Affinity Peptide Probes to Detect the SH3 Domain of Cancer Biomarker BCR–ABL

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

The BCR–ABL fusion protein is closely associated with the pathological progression of chronic myelogenous leukaemia and some other myeloproliferative diseases, which has long been recognized as one of the most important cancer biomarkers in the tumor diagnosis community. The SH3 domain of BCR–ABL is a small, conserved protein module that specifically recognizes and binds proline-rich peptide fragments. In the current study, we used a synthetic strategy to discover new peptide probes with high affinity binding to the BCR–ABL SH3 domain. In the procedure, a sequence-based machine learning predictor was developed based on a set of affinity-known SH3 binders, and the predictor was then used to guide the evolutional optimization of numerous virtual peptides to enrich high binding potency for the SH3 domain. Subsequently, a evolved peptide population was generated, from which ten peptides with the highest affinity scores were selected and their interaction free energies with SH3 domain were characterized systematically using a combination of molecular dynamics simulation and binding free energy analysis. Consequently, four peptides were suggested as promising candidates and their affinities toward SH3 domain were assayed; two peptides, APTYTPPPPP and APTYAPPPPP, were identified to have potent binding capability with dissociation constants K d of 3 and 8 μM, respectively. Further, the structural basis and energetic property of SH3 domain in complex with APTYTPPPPP were examined in detail, revealing a non-specific interaction in SH3–peptide recognition that should render a broad ligand spectrum for the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boulesteix AL, Strimmer K (2007) Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief Bioinform 8:32–44

    Article  PubMed  CAS  Google Scholar 

  • Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM (2005) The amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cesareni G, Pann S, Nardelli G, Castagnoli L (2002) Can we infer peptide recognition specificity mediated by SH3 domains? FEBS Lett 513:38–44

    Article  PubMed  CAS  Google Scholar 

  • Clark SS, McLaughlin J, Timmons M, Pendergast AM, Ben-Neriah Y, Dow LW, Crist W, Rovera G, Smith SD, Witte ON (1988) Expression of a distinctive BCR–ABL oncogene in Ph1-positive acute lymphocytic leukemia (ALL). Science 239:775–777

    Article  PubMed  CAS  Google Scholar 

  • Cortes C, Vapnik VN (1995) Support-vector networks. Mach Learn 20:273–297

    Google Scholar 

  • Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, Capdeville R, Talpaz M (2001) Activity of a specific inhibitor of the BCR–ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344:1038–1042

    Article  PubMed  CAS  Google Scholar 

  • Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  PubMed  CAS  Google Scholar 

  • Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276

    Article  PubMed  CAS  Google Scholar 

  • Gumbart JC, Roux B, Chipot C (2013) Standard binding free energies from computer simulations: what is the best strategy? J Chem Theory Comput 9:794–802

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hellberg S, Sjöström M, Skagerberg B, Wold S (1987) Peptide quantitative structure-activity relationships, a multivariate approach. J Med Chem 30:1126–1135

    Article  PubMed  CAS  Google Scholar 

  • Hou T, McLaughlin W, Lu B, Chen K, Wang W (2006a) Prediction of binding affinities between the human amphiphysin-1 SH3 domain and its peptide ligands using homology modeling, molecular dynamics and molecular field analysis. J Proteome Res 5:32–43

    Article  PubMed  CAS  Google Scholar 

  • Hou T, Chen K, McLaughlin WA, Lu B, Wang W (2006b) Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. PLoS Comput Biol 2:e1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hou T, Xu Z, Zhang W, McLaughlin WA, Case DA, Xu Y, Wang W (2009) Characterization of domain-peptide interaction interface: a generic structure-based model to decipher the binding specificity of SH3 domains. Mol Cell Proteomics 8:639–649

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jing T, Feng J, Li D, Liu J, He G (2013) Rational design of angiotensin-I-converting enzyme inhibitory peptides by integrating in silico modeling and an in vitro assay. Chem Med Chem 8:1057–1066

    Article  PubMed  CAS  Google Scholar 

  • Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  PubMed  CAS  Google Scholar 

  • Krivov GG, Shapovalov MV, Dunbrack RL Jr (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77:778–795

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lambert GK, Duhme-Klair AK, Morgan T, Ramjee MK (2013) The background, discovery and clinical development of BCR–ABL inhibitors. Drug Discov Today 18:992–1000

    Article  PubMed  CAS  Google Scholar 

  • Li SS (2005) Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 390:641–653

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mei H, Liao ZH, Zhou Y, Li SZ (2005) A new set of amino acid descriptors and its application in peptide QSARs. Biopolymers (Pept Sci) 80:775–786

    Article  CAS  Google Scholar 

  • Mughal A, Aslam HM, Khan AM, Saleem S, Umah R, Saleem M (2013) BCR–ABL tyrosine kinase inhibitors—current status. Infect Agent Cancer 8:23

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nashed AL, Rao KW, Gulley ML (2003) Clinical applications of BCR–ABL molecular testing in acute leukemia. J Mol Diagn 5:63–72

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pisabarro MT, Serrano L (1996) Rational design of specific high-affinity peptide ligands for the Abl-SH3 domain. Biochemistry 35:10634–10640

    Article  PubMed  CAS  Google Scholar 

  • Pisabarro MT, Serrano L, Wilmanns M (1998) Crystal structure of the abl-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions. J Mol Biol 281:513–521

    Article  PubMed  CAS  Google Scholar 

  • Ren R (2005) Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5:172–183

    Article  PubMed  CAS  Google Scholar 

  • Sawyers CL (1993) Molecular consequences of the BCR–ABL translocation in chronic myelogenous leukemia. Leuk Lymphoma 11:S101–S103

    Article  Google Scholar 

  • Schweimer K, Hoffmann S, Bauer F, Friedrich U, Kardinal C, Feller SM, Biesinger B, Sticht H (2002) Structural investigation of the binding of a herpesviral protein to the SH3 domain of tyrosine kinase Lck. Biochemistry 41:5120–5130

    Article  PubMed  CAS  Google Scholar 

  • Tian F, Zhou P, Li Z (2007) T-scale as a novel vector of topological descriptors for amino acids and its application in QSARs of peptides. J Mol Struct 830:106–115

    Article  CAS  Google Scholar 

  • Tian F, Yang L, Lv F, Yang Q, Zhou P (2009) In silico quantitative prediction of peptides binding affinity to human MHC molecule: an intuitive quantitative structure-activity relationship approach. Amino Acids 36:535–554

    Article  PubMed  CAS  Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Hou T, Li N, Xu Y, Wang W (2012) Proteome-wide detection of Abl1 SH3-binding peptides by integrating computational prediction and peptide microarray. Mol Cell Proteomics 11:O111.010389

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zaliani A, Gancia E (1999) MS-WHIM scores for amino acids: a new 3D-description for peptide QSAR and QSPR studies. J Chem Inf Comput Sci 39:525–533

    Article  CAS  Google Scholar 

  • Zhou P, Wang C, Ren Y, Yang C, Tian F (2013) Computational peptidology: a new and promising approach to therapeutic peptide design. Curr Med Chem 20:1985–1996

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81171992).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Min Liu or Wei Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, HM., Li, LJ., Guo, J. et al. Evolution of High-Affinity Peptide Probes to Detect the SH3 Domain of Cancer Biomarker BCR–ABL. Int J Pept Res Ther 20, 201–208 (2014). https://doi.org/10.1007/s10989-013-9382-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-013-9382-8

Keywords

Navigation