Skip to main content
Log in

Methionine and S-methylmethionine exhibit temporal and spatial accumulation patterns during the Arabidopsis life cycle

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Methionine is a nutritionally essential sulfur-containing amino acid found at low levels in plant tissues. Yet, the factors that regulate its synthesis and accumulation in seeds are not fully known. Recent genetic studies demonstrate that Arabidopsis seeds are able to synthesize methionine de novo through the aspartate family pathway similarly to vegetative tissues; however, additional biochemical studies suggest that the S-methylmethionine (SMM) cycle also plays a major role in methionine synthesis in seeds. To better understand the contribution of these two pathways to methionine synthesis, we have sampled various vegetative and reproductive tissues during the Arabidopsis life cycle and determined the contents of soluble and protein-incorporated methionine, SMM, as well as the expression levels of the key genes involved in these two pathways. Our results strengthen the hypothesis that SMM that is produced in the rosette leaves from methionine contributes to methionine accumulation in seeds. However, the SMM cycle may have additional functions in plant tissues since its key genes were expressed in all of the examined tissues, although at different rates. The accumulation patterns of soluble and protein-incorporated methionine during the Arabidopsis life cycle were found to be similar to most of the other amino acids, especially to those belonging to the branched-chain and aromatic amino acids that are produced in chloroplasts together with methionine. This indicates that similar factors regulate the levels of amino acids during development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amir R (2010) Current understanding of the factors regulating methionine content in vegetative tissues of higher plants. Amino Acids 39(4):917–931. doi:10.1007/s00726-010-0482-x

    Article  CAS  PubMed  Google Scholar 

  • Amir R, Han T, Ma F (2012) Bioengineering approaches to improve the nutritional values of seeds by increasing their methionine content. Mol Breed 29:915–924

    Article  CAS  Google Scholar 

  • Bartlem D, Lambein I, Okamoto T, Itaya A, Uda Y, Kijima F, Tamaki Y, Nambara E, Naito S (2000) Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in Arabidopsis. Plant Physiol 123(1):101–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bourgis F, Roje S, Nuccio ML, Fisher DB, Tarczynski MC, Li C, Herschbach C, Rennenberg H, Pimenta MJ, Shen TL, Gage DA, Hanson AD (1999) S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11(8):1485–1498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradbury LM, Ziemak MJ, Elbadawi-Sidhu M, Fiehn O, Hanson AD (2014) Plant-driven repurposing of the ancient S-adenosylmethionine repair enzyme homocysteine S-methyltransferase. Biochem J. doi:10.1042/BJ20140753

    PubMed  Google Scholar 

  • Cohen H, Israeli H, Matityahu I, Amir R (2014) Seed-specific expression of a feedback-insensitive form of cystathionine-gamma-synthase in arabidopsis stimulates metabolic and transcriptomic responses associated with desiccation stress. Plant Physiol 163(3):1575–1592. doi:10.1104/pp.114.246058

    Article  Google Scholar 

  • Curien G, Ravanel S, Dumas R (2003) A kinetic model of the branch-point between the methionine and threonine biosynthesis pathways in Arabidopsis thaliana. Eur J Biochem 270(23):4615–4627

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139(1):5–17. doi:10.1104/pp.105.063743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galili G, Amir R (2013) Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnol J 11(2):211–222. doi:10.1111/pbi.12025

    Article  CAS  PubMed  Google Scholar 

  • Gallardo K, Firnhaber C, Zuber H, Hericher D, Belghazi M, Henry C, Kuster H, Thompson R (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds: evidence for metabolic specialization of maternal and filial tissues. Mol Cell Proteomics 6(12):2165–2179. doi:10.1074/mcp.M700171-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Gepstein S, Sabehi G, Carp MJ, Hajouj T, Nesher MF, Yariv I, Dor C, Bassani M (2003) Large-scale identification of leaf senescence-associated genes. Plant J 36(5):629–642

    Article  CAS  PubMed  Google Scholar 

  • Giovanelli JG (1987) Sulfur amino acids in plants: an overview. Methods Enzymol 143:419–428

    Article  CAS  Google Scholar 

  • Guyer D, Patton D, Ward E (1995) Evidence for cross-pathway regulation of metabolic gene expression in plants. Proc Natl Acad Sci USA 92(11):4997–5000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hacham Y, Avraham T, Amir R (2002) The N-terminal region of Arabidopsis cystathionine gamma-synthase plays an important regulatory role in methionine metabolism. Plant Physiol 128(2):454–462. doi:10.1104/pp.010819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hacham Y, Matityahu I, Schuster G, Amir R (2008) Overexpression of mutated forms of aspartate kinase and cystathionine gamma-synthase in tobacco leaves resulted in the high accumulation of methionine and threonine. Plant J 54(2):260–271. doi:10.1111/j.1365-313X.2008.03415.x

    Article  CAS  PubMed  Google Scholar 

  • Hacham Y, Matityahu I, Amir R (2013) Light and sucrose up-regulate the expression level of Arabidopsis cystathionine gamma-synthase, the key enzyme of methionine biosynthesis pathway. Amino Acids 45(5):1179–1190. doi:10.1007/s00726-013-1576-z

    Article  CAS  PubMed  Google Scholar 

  • Hanafy MS, Rahman SM, Nakamoto Y, Fujiwara T, Naito S, Wakasa K, Ishimoto M (2013) Differential response of methionine metabolism in two grain legumes, soybean and azuki bean, expressing a mutated form of Arabidopsis cystathionine gamma-synthase. J Plant Physiol 170(3):338–345. doi:10.1016/j.jplph.2012.10.018

    Article  CAS  PubMed  Google Scholar 

  • Hesse H, Hoefgen R (2003) Molecular aspects of methionine biosynthesis. Trends Plant Sci 8(6):259–262 S1360138503001079

    Article  CAS  PubMed  Google Scholar 

  • Inaba K, Fujiwara T, Hayashi H, Chino M, Komeda Y, Naito S (1994) Isolation of an Arabidopsis thaliana mutant, mto1, that overaccumulates soluble methionine. Plant Physiol 104(3):881–887 104/3/881 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jander G, Joshi V (2010) Recent progress in deciphering the biosynthesis of aspartate-derived amino acids in plants. Mol Plant 3(1):54–65. doi:10.1093/mp/ssp104

    Article  CAS  PubMed  Google Scholar 

  • Joshi V, Jander G (2009) Arabidopsis methionine gamma-lyase is regulated according to isoleucine biosynthesis needs but plays a subordinate role to threonine deaminase. Plant Physiol 151(1):367–378. doi:10.1104/pp.109.138651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim J, Leustek T (2000) Repression of cystathionine γ-synthase in Arabidopsis thaliana produces partial methionine auxotrophy and developmental abnormalities. Plant Sci 151:9–18. doi:10.1016/S0168-9452(99)00188-0

    Article  CAS  Google Scholar 

  • Kim J, Lee M, Chalam R, Martin MN, Leustek T, Boerjan W (2002) Constitutive overexpression of cystathionine gamma-synthase in Arabidopsis leads to accumulation of soluble methionine and S-methylmethionine. Plant Physiol 128(1):95–107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kocsis MG, Ranocha P, Gage DA, Simon ES, Rhodes D, Peel GJ, Mellema S, Saito K, Awazuhara M, Li C, Meeley RB, Tarczynski MC, Wagner C, Hanson AD (2003) Insertional inactivation of the methionine s-methyltransferase gene eliminates the s-methylmethionine cycle and increases the methylation ratio. Plant Physiol 131(4):1808–1815. doi:10.1104/pp.102.018846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Ann Rev Plant Physiol Plant Mol Biol 47:569–593. doi:10.1146/annurev.arplant.47.1.569

    Article  CAS  Google Scholar 

  • Lee M, Huang T, Toro-Ramos T, Fraga M, Last RL, Jander G (2008) Reduced activity of Arabidopsis thaliana HMT2, a methionine biosynthetic enzyme, increases seed methionine content. Plant J 54(2):310–320. doi:10.1111/j.1365-313X.2008.03419.x

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105. doi:10.1146/annurev-arplant-042811-105439

    Article  CAS  PubMed  Google Scholar 

  • Matityahu I, Godo I, Hacham Y, Amir R (2013) Tobacco seeds expressing feedback-insensitive cystathionine gamma-synthase exhibit elevated content of methionine and altered primary metabolic profile. BMC Plant Biol 13:206. doi:10.1186/1471-2229-13-206

    Article  PubMed Central  PubMed  Google Scholar 

  • Mudd H, Datko H (1990) The S-methylmethionine cycle in Lemna paucicostata. Plant Physiol 93:623–630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol 138(1):304–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ranocha P, McNeil SD, Ziemak MJ, Li C, Tarczynski MC, Hanson AD (2001) The S-methylmethionine cycle in angiosperms: ubiquity, antiquity and activity. Plant J 25(5):575–584 tpj988 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ravanel S, Gakiere B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95(13):7805–7812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roje S (2006) S-Adenosyl-l-methionine: beyond the universal methyl group donor. Phytochemistry 67(15):1686–1698. doi:10.1016/j.phytochem.2006.04.019

    Article  CAS  PubMed  Google Scholar 

  • Song S, Hou W, Godo I, Wu C, Yu Y, Matityahu I, Hacham Y, Sun S, Han T, Amir R (2013) Soybean seeds expressing feedback-insensitive cystathionine γ-synthase exhibit a higher content of methionine. J Exp Bot 64(7):1917–1926. doi:10.1093/jxb/ert053

    Article  CAS  PubMed  Google Scholar 

  • Soudry E, Ulitzur S, Gepstein S (2005) Accumulation and remobilization of amino acids during senescence of detached and attached leaves: in planta analysis of tryptophan levels by recombinant luminescent bacteria. J Exp Bot 56(412):695–702. doi:10.1093/jxb/eri054

    Article  CAS  PubMed  Google Scholar 

  • Tan Q, Zhang L, Grant J, Cooper P, Tegeder M (2010) Increased phloem transport of S-methylmethionine positively affects sulfur and nitrogen metabolism and seed development in pea plants. Plant Physiol 154(4):1886–1896. doi:10.1104/pp.110.166389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tegeder M, Rentsch D (2010) Uptake and partitioning of amino acids and peptides. Mol Plant 3(6):997–1011. doi:10.1093/mp/ssq047

    Article  CAS  PubMed  Google Scholar 

  • Tzin V, Galili G (2010) New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant 3(6):956–972. doi:10.1093/mp/ssq048

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37(Web Server issue):W652–W660. doi:10.1093/nar/gkp356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0–a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40(Web Server issue):W127–W133. doi:10.1093/nar/gks374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Gidi Baum for his critical reading and valuable comments. This work was supported by the Israel Science Foundation (Grant 231-09).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Amir.

Additional information

A. Frank and H. Cohen contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 164 kb)

Supplementary material 2 (XLSX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, A., Cohen, H., Hoffman, D. et al. Methionine and S-methylmethionine exhibit temporal and spatial accumulation patterns during the Arabidopsis life cycle. Amino Acids 47, 497–510 (2015). https://doi.org/10.1007/s00726-014-1881-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1881-1

Keywords

Navigation