Skip to main content
Log in

Current understanding of the factors regulating methionine content in vegetative tissues of higher plants

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Methionine is a nutritionally essential, sulfur-containing amino acid found in low levels in plants, which often limits its value as a source of dietary protein to humans and animals. Methionine is also a fundamental metabolite in plant cells since, through its first metabolite, S-adenosylmethionine (SAM), it controls the level of several key metabolites, such as ethylene, polyamines and biotin. SAM is also the primary methyl group donor that regulates different processes in plants. Despite its nutritional and regulatory significance, the factors regulating methionine content in plants are not fully known. In this review, we summarize the current knowledge and recent progress made in our understanding of the methionine metabolism. The enzymes and substrates that regulate methionine synthesis were described, as well as the influences of the catabolic pathways of methionine on its content. The current effort to tailor an improvement of methionine content in vegetative tissues with minimal interference in plant growth and productivity is described as well. The accumulated knowledge has provided new insights into the control of methionine level in plants and, in some cases, has resulted in significant improvements in the nutritional value of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amir R (2008) Towards improving methionine content in plants for enhanced nutritional quality. Funct Plant Sci Biotechnol 2:36–46

    Google Scholar 

  • Amir R, Tabe L (2006) Molecular approaches to improving plant methionine content. In: Pawan Jaiwal KJ, Rana PS (eds) Plant genetic engineering, vol 8. Metabolic engineering and molecular farming II. Studium Press LLC 77272, Huston, USA, pp 1–26

    Google Scholar 

  • Amir R, Hacham Y, Galili G (2002) Cystathionine γ-synthase and threonine synthase operate in concert to regulate carbon flow towards methionine in plants. Trends Plant Sci 7:153–156

    Article  PubMed  CAS  Google Scholar 

  • Avraham T, Amir R (2005) Methionine and threonine regulate the branching point of their biosynthesis pathways and thus controlling the level of each other. Transg Res 14:299–311

    Article  CAS  Google Scholar 

  • Avraham T, Badani S, Galili S, Amir R (2005) Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants overexpressing the Arabidopsis cystathionine γ-synthase gene. Plant Biotechnol J 3:71–80

    Article  PubMed  CAS  Google Scholar 

  • Azevedo RA, Lancien M, Lea PJ (2006) The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 30:143–162

    Article  PubMed  CAS  Google Scholar 

  • Bagga S, Adams A, Kemp JD, Sengupta-Gopalan C (1995) Accumulation of 15-kilodalton zein in novel protein bodies in transgenic tobacco. Plant Physiol 107:13–23

    PubMed  CAS  Google Scholar 

  • Bagga S, Armendaris A, Klypina N, Ray I, Ghoshroy S, Endress D, Dutton JD, Kemp M, Sengupta-Gopalan C (2004) Genetic engineering ruminal stable high methionine protein in the foliage of alfalfa. Plant Sci 166:273–283

    Article  CAS  Google Scholar 

  • Bagga S, Ponteza C, Ross J, Martin MN, Luestek T, Sengupta-Gopalan C (2005) A transgene for high methionine protein is post-transcriptionally regulated by methionine. In Vitro Cell Dev Biol Plant 41:31–741

    Google Scholar 

  • Bartlem DL, Okamoto I, Itaya T, Uda A, Kijima Y, Tamaki Y, Nambara E, Naito S (2000) Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in Arabidopsis. Plant Physiol 123:101–110

    Article  PubMed  CAS  Google Scholar 

  • Bellucci M, De Marchis M, Mannucci R, Bock R, Arcioni S (2005) Cytoplasm and chloroplasts are not suitable subcellular locations for beta-zein accumulation in transgenic plants. J Exp Bot 56:1205–1212

    Article  PubMed  CAS  Google Scholar 

  • Ben Tzvi-Tzchori I, Perl A, Galili G (1996) Lysine and threonine metabolism are subject to complex patterns of regulation in Arabidopsis. Plant Mol Biol 32:727–734

    Article  PubMed  CAS  Google Scholar 

  • Blaszczyk A, Brodzik R, Sirko A (1999) Increased resistance to oxidative stress in transgenic tobacco plants overexpressing bacterial serine acetyltransferase. Plant J 20:237–243

    Article  PubMed  CAS  Google Scholar 

  • Bloem E, Haneklaus S, Salac I, Wickenhäuser P, Schnug E (2007) Facts and fiction about sulfur metabolism in relation to plant–pathogen interactions. Plant Biol (Stuttg) 9:596–607

    Article  CAS  Google Scholar 

  • Boerjan W, Bauw M, Montagu MV, Inze D (1994) Distinct phenotypes generate by overexpression and suppression of S-adenosyl-l-methionine synthetase reveal developmental patterns of gene silencing in tobacco. Plant Cell 6:1401–1414

    Article  PubMed  CAS  Google Scholar 

  • Bourgis F, Roje R, Nuccio ML, Fisher DB, Tarczynski MC, Li C, Herschbach C, Rennenberg H, Pimenta MJ, Shen TL, Gage DA, Hanson AD (1999) S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11:1485–1498

    Article  PubMed  CAS  Google Scholar 

  • Brinch-Pedersen H, Galili G, Knudsen S, Holm PB (1996) Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant Mol Biol 32:611–620

    Article  PubMed  CAS  Google Scholar 

  • Bürstenbinder K, Rzewuski G, Wirtz M, Hell R, Sauter M (2007) The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J 49:238–249

    Article  PubMed  CAS  Google Scholar 

  • Chiang PK, Gordon R, Tal J, Zeng GC, Doctor PB, Pardhasaradhi K, McCann PP (1996) S-Adenosylmethionine and methylation. FASEB J 10:471–480

    PubMed  CAS  Google Scholar 

  • Chiba Y, Ishikawa M, Kijima F et al (1999) Evidence for autoregulation of cystathionine gamma-synthase mRNA stability in Arabidopsis. Science 286:1371–1374

    Article  PubMed  CAS  Google Scholar 

  • Chiba Y, Sakurai R, Yoshino M, Ominato K, Ishikawa M, Onouchi H, Naito S (2003) S-adenosyl-l-methionine is an effector in the post-transcriptional autoregulation of the cystathionine gamma-synthase gene in Arabidopsis. Proc Natl Acad Sci USA 100:10225–10230

    Article  PubMed  CAS  Google Scholar 

  • Curien G, Job D, Douce R, Dumas R (1998) Allosteric activation of Arabidopsis threonine synthase by S-adenosylmethionine. Biochem 37:13212–13221

    Article  CAS  Google Scholar 

  • Curien G, Ravanel S, Dumas R (2003) A kinetic model of the branch-point between the methionine and threonine biosynthesis pathways in Arabidopsis thaliana. Eur J Biochem 270:4615–4627

    Article  PubMed  CAS  Google Scholar 

  • Czuj T, Żuk M, Starzycki M, Amir R, Szopa J (2009) Engineering increases in sulfur amino acid contents in flax by overexpressing the yeast Met25 gene. Plant Sci 177:584–592

    Article  CAS  Google Scholar 

  • Dancs G, Kondrák M, Bánfalvi Z (2008) The effects of enhanced methionine synthesis on amino acid and anthocyanin content of potato tubers. BMC Plant Biol 8:65–75

    Article  PubMed  CAS  Google Scholar 

  • Deschamps FC, Ramos LP, Fontana JD (1996) Pretreatment of sugar cane bagasse for enhanced ruminal digestion. Appl Biochem Biotechnol 58:171–182

    Article  Google Scholar 

  • Di R, Kim J, Martin MN, Leustek T, Jhoo J, Ho CT, Tumer NE (2003) Enhancement of the primary flavor compound methional in potato by increasing the level of soluble methionine. J Agric Food Chem 51:5695–5702

    Article  PubMed  CAS  Google Scholar 

  • Droux M (2004) Sulfur assimilation and the role of sulfur in plants metabolism: a survey. Photosyn Res 79:331–348

    Article  PubMed  CAS  Google Scholar 

  • Eckermann C, Eichel J, Schroder J (2000) Plant methionine synthase: new insights into properties and expression. Biol Chem 381:695–703

    Article  PubMed  CAS  Google Scholar 

  • Eichel J, Gonzalez JC, Hotez M, Matthews RG, Schroder J (1995) Vitamin-B12 independent methionine synthase from higher plant (Catharanthus roseus). Eur J Biochem 230:1053–1058

    Article  PubMed  CAS  Google Scholar 

  • Fukagawa NK (2006) Sparing of methionine requirements: evaluation of human data takes sulfur amino acids beyond protein. J Nutr 136:1676S–1681S

    PubMed  CAS  Google Scholar 

  • Fukagawa NK, Galbraith R (2004) Advancing age and other factors influencing the balance between amino acid requirements and toxicity. J Nutr 134:1569S–1574S

    PubMed  CAS  Google Scholar 

  • Gakiere B, Denis L, Droux M, Ravanel S, Douce R, Job D (2000a) Methionine synthesis in higher plants: sense strategy applied to cystathionine gamma-synthase and cystathionine beta-lyase in Arabidopsis thaliana. Paul Haupt, Bern

    Google Scholar 

  • Gakiere B, Ravanel S, Droux M, Douce R, Job D (2000b) Mechanisms to account for maintenance of the soluble methionine pool in transgenic Arabidopsis plants expressing antisense cystathionine gamma-synthase cDNA. C R Acad Sci III 323:841–851

    PubMed  CAS  Google Scholar 

  • Galili S, Guenoune D, Wilinger S, Kapulnic Y (2000) Enhanced levels of free and protein bound threonine in transgenic alfalfa (Medicago sativa L.) expressing a bacterial feedback insensitive aspartate kinase gene. Transgenic Res 9:137–144

    Article  PubMed  CAS  Google Scholar 

  • Galili G, Amir R, Hoefgen R, Hesse H (2005) Improving the levels of essential amino acids and sulfur metabolites in plants. Biol Chem 386:817–831

    Article  PubMed  CAS  Google Scholar 

  • Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge UI (2007) The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 51:247–261

    Article  PubMed  CAS  Google Scholar 

  • Giovanelli JG (1987) Sulfur amino acids in plants: an overview. Methods Enzymol 143:419–428

    Article  CAS  Google Scholar 

  • Giovanelli J, Mudd G, Datko H (1985) In vivo regulation of de novo methionine biosynthesis in a higher plant (Lemna). Plant Physiol 77:450–455

    Article  PubMed  CAS  Google Scholar 

  • Golan A, Avraham T, Matityahu I, Badani H, Galili S, Amir R (2005) Soluble methionine enhanced the accumulation of 15 kD zein, a methionine rich storage protein, in BY2 cells and in alfalfa transgenic plants but not in transgenic tobacco plants. J Exp Bot 56:2443–2452

    Article  CAS  Google Scholar 

  • Goto DB, Ogi M, Kijima F, Kumagai T, Werven FV, Onouchi H, Naito S (2002) A single-nucleotide mutation in a gene encoding S-adenosylmethionine synthetase is associated with methionine over-accumulation phenotype in Arabidopsis thaliana. Genes Genet Syst 77:89–95

    Article  PubMed  CAS  Google Scholar 

  • Goyer A, Collakova E, Shachar-Hill Y, Hanson AD (2007) Functional characterization of a methionine gamma-lyase in Arabidopsis and its implication in an alternative to the reverse trans-sulfuration pathway. Plant Cell Physiol 48:232–242

    Article  PubMed  CAS  Google Scholar 

  • Hacham Y, Avraham T, Amir R (2002) The N-terminal region of Arabidopsis cystathionine gamma-synthase plays an important regulatory role in methionine metabolism. Plant Physiol 128:454–462

    Article  PubMed  CAS  Google Scholar 

  • Hacham Y, Schuster G, Amir R (2006) An in vivo internal deletion in the N-terminus of cystathionine γ-synthase in Arabidopsis results with decreased modulation of expression by methionine. Plant J 45:955–967

    Article  PubMed  CAS  Google Scholar 

  • Hacham Y, Song L, Schuster G, Amir R (2007) Lysine enhances methionine content by modulating the expression of S-adenosylmethionine synthase. Plant J 51:850–861

    Article  PubMed  CAS  Google Scholar 

  • Hacham Y, Matityahu I, Schuster G, Amir R (2008) Overexpression of mutated forms of aspartate kinase and cystathionine γ-synthase in tobacco leaves resulted in the high accumulation of methionine and threonine. Plant J 54:260–271

    Article  PubMed  CAS  Google Scholar 

  • Hanson AD, Rivoal J, Paquet L, Gage DA (1994) Biosynthesis of 3- dimethylsulfoniopropionate in Wollastonia biflora (L.) DC. Evidence that S-methylmethionine is an intermediate. Plant Physiol 105:103–110

    Article  PubMed  CAS  Google Scholar 

  • Haraguchi Y, Kadokura Y, Nakamoto M, Onouchi H, Naito S (2008) Ribosome stacking defines CGS1 mRNA degradation sites during nascent peptide-mediated translation arrest. Plant Cell Physiol 49:314–323

    Article  PubMed  CAS  Google Scholar 

  • Hesse H, Hofgen R (2003) Molecular aspects of methionine biosynthesis. Trends Plant Sci 8:259–262

    Article  PubMed  CAS  Google Scholar 

  • Hesse H, Kerft O, Maimann S, Zeh M, Hoefgen R (2004) Current understanding of the regulation of methionine biosynthesis in plants. J Exp Bot 55:1799–1808

    Article  PubMed  CAS  Google Scholar 

  • Hirai MY, Saito K (2004) Post-genomics approaches for the elucidation of plant adaptive mechanisms to sulphur deficiency. J Exp Bot 55:1871–1879

    Article  PubMed  CAS  Google Scholar 

  • Hirai MY, Sugiyama K, Tohge Y, Sawada T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104:6478–6483

    Article  PubMed  CAS  Google Scholar 

  • Inba K, Fujiwara T, Hayashi H, Chino M, Komeda Y, Naito S (1994) Isolation of an Arabidopsis thaliana mutant, mto1, that over accumulates soluble methionine. Temporal and spatial patterns of soluble methionine accumulation. Plant Physiol 104:881–887

    Google Scholar 

  • Jander G, Joshi V (2010) Recent progress in deciphering the biosynthesis of aspartate-derived amino acids in plants. Mol Plant 3:54–65

    Article  PubMed  CAS  Google Scholar 

  • Jez JM (2008) Plant sulfur compounds and human health. Sulfur: a missing link between soils, crops and nutrition. ASA-CSSA-SSSA, JJ. Madison, pp 281–291

  • Joshi V, Jander G (2009) Arabidopsis thaliana methionine gamma-lyase is regulated according to isoleucine biosynthesis needs, but plays a subordinate role to threonine deaminase. Plant Physiol 151:367–378

    Article  PubMed  CAS  Google Scholar 

  • Joshi V, Joung JG, Fei Z, Jander G (2010) Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids (in this issue)

  • Kagan RM, Clarke S (1994) Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch Biochem Biophys 310:417–427

    Article  PubMed  CAS  Google Scholar 

  • Katz YS, Galili G, Amir R (2006) Regulatory role of cystathionine γ-synthase and de novo synthesis of methionine in ethylene production during tomato fruit ripening. Plant Mol Biol 61:255–268

    Article  PubMed  CAS  Google Scholar 

  • Kaur-Sawhney R, Albabella T, Tiburcio AF, Galston AW (2003) Polyamines in plants: an overview. J Cell Mol Biol 2:1–12

    Google Scholar 

  • Kim J, Leustek T (1996) Cloning and analysis of the gene for cystathionine γ-synthase from Arabidopsis thaliana. Plant Mol Biol 32:1117–1124

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Leustek T (2000) Repression of cystathionine g-synthase in Arabidopsis thaliana produces partial methionine auxotrophy and developmental abnormalities. Plant Sci 151:9–18

    Article  CAS  Google Scholar 

  • Kim J, Lee M, Chalam R, Martin MN, Leustek T, Boerjan W (2002) Constitutive overexpression of cystathionine g-synthase in Arabidopsis thaliana leads to accumulation of soluble methionine and S-methylmethionine. Plant Physiol 128:95–107

    Article  PubMed  CAS  Google Scholar 

  • Kocsis MG, Nolte P, Gage DA, Simon ES, Rhodes D, Peel GJ, Mellema S, Saito K, Awazuhara M, Li C, Meeley RB, Tarczynski MC, Wagner C, Hanson AD (2003) Insertional inactivation of the methionine S-methyltransferase gene eliminates the S-methylmethionine cycle and increases the methylation ratio. Plant Physiol 131:1808–1815

    Article  PubMed  CAS  Google Scholar 

  • Kreft O, Hoefgen R, Hesse H (2003) Functional analysis of cystathionine g-synthase in genetically engineered potato plants. Plant Physiol 131:1843–1854

    Article  PubMed  CAS  Google Scholar 

  • Kroymann J, Textor S, Tokuhisa JG, Falk KL, Bartram S, Gershenzon J, Mitchell-Olds T (2001) A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol 127:1077–1088

    Article  PubMed  CAS  Google Scholar 

  • Kutz A, Müller A, Hennig P, Kaiser WM, Piotrowski M, Weiler EW (2002) A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J 30:95–106

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Martin MN, Hudson AO, Lee J, Muhitch MJ, Leustek T (2005) Methionine and threonine synthesis are limited by homoserine availability and not the activity of homoserine kinase in Arabidopsis thaliana. Plant J 41:685–696

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Huang T, Toro-Ramos T, Fraga M, Last RL, Jander G (2008) Reduced activity of Arabidopsis thaliana HMT2, a methionine biosynthetic enzyme, increases seed methionine content. Plant J 54:310–320

    Article  PubMed  CAS  Google Scholar 

  • Lertratanangkoon K, Orkiszewski RS, Scimeca JM (1996) Methyl-donor deficiency due to chemically induced glutathione depletion. Cancer Res 56:995–1005

    PubMed  CAS  Google Scholar 

  • Less H, Galili G (2008) Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol 147:316–330

    Article  PubMed  CAS  Google Scholar 

  • Less H, Galili G (2009) Coordination between gene modules control the operation of plant amino acid metabolic networks. BMC Syst Biol 3:14–19

    Article  PubMed  CAS  Google Scholar 

  • Loizeau K, Gambonnet B, Zhang GF, Curien G, Jabrin S, Van Der Straeten S, Lambert WE, Rébeillé F, Ravanel S (2007) Regulation of C1 Metabolism in Arabidopsis: The N-terminal regulatory domain of cystathionine gamma synthase is cleaved in response to folate starvation. Plant Physiol 145:491–503

    Article  PubMed  CAS  Google Scholar 

  • Mainieri D, Rossi M, Archinti M, Bellucci M, De Marchis F, Vavassori S, Pompa A, Arcioni S, Vitale A (2004) Zeolin: a new recombinant storage protein constructed using maize gamma-zein and bean phaseolin. Plant Physiol 136:3447–3456

    Article  PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H (2006) Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18:3235–3251

    Article  PubMed  CAS  Google Scholar 

  • Matilla AJ (2000) Ethyelene in seed formation and germination. Seed Sci Res 6:111–126

    Google Scholar 

  • Matityahu I, Kachan L, Bar Ilan I, Amir R (2005) Transgenic tobacco plants overexpressing the Met25 gene of Saccharomyces cerevisiae exhibit enhanced levels of cysteine and glutathione and increased tolerance to oxidative stress. Amino Acids 30:185–194

    Article  PubMed  CAS  Google Scholar 

  • Mudd SH, Datko AH (1986) Methionine methyl group metabolism in lemna. Plant Physiol 81:103–114

    Article  PubMed  CAS  Google Scholar 

  • Nikiforova V, Kempa S, Zeh M, Maimann S, Kreft O, Casazza AP, Riedel K, Tauberger E, Hoefgen R, Hesse H (2002) Engineering of cysteine and methionine biosynthesis in potato. Amino Acids 22:259–278

    Article  PubMed  CAS  Google Scholar 

  • Nikiforova VJ, Daub J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol 138:304–318

    Article  PubMed  CAS  Google Scholar 

  • Nikiforova VJ, Bielecka M, Gakière B, Krueger S, Rinder J, Kempa S, Morcuende R, Scheible WR, Hesse H, Hoefgen R (2006) Effect of sulfur availability on the integrity of amino acid biosynthesis in plants. Amino Acids 30:173–183

    Article  PubMed  CAS  Google Scholar 

  • Noji M, Saito M, Nakamura M, Aono M, Saji H, Saito K (2001) Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants. Plant Physiol 126:973–980

    Article  PubMed  CAS  Google Scholar 

  • Onouchi H, Lambein I, Sakurai R, Suzuki A, Chiba Y, Naito S (2004) Autoregulation of the gene for cystathionine gamma-synthase in Arabidopsis: post-transcriptional regulation induced by S-adenosylmethionine. Biochem Soc Trans 32:597–600

    Article  PubMed  CAS  Google Scholar 

  • Onouchi H, Nagami Y, Haraguchi Y, Nakamoto M, Nishimura Y, Sakurai R, Nagao N, Kawasaki D, Kadokura Y, Naito S (2005) Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. Genes Dev 19:1799–1810

    Article  PubMed  CAS  Google Scholar 

  • Onouchi H, Haraguchi Y, Nakamoto M, Kawasaki D, Nagami-Yamashita Y, Murota K, Kezuka-Hosomi A, Chiba Y, Naito S (2008) Nascent peptide-mediated translation elongation arrest of Arabidopsis thaliana CGS1 mRNA occurs autonomously. Plant Cell Physiol 49:549–556

    Article  PubMed  CAS  Google Scholar 

  • Pang XM, Zhang ZY, Wen XP, Ban Y Moriguchi T (2007) Polyamines, all-purpose players in response to environment stresses in plants. Plant Stress 1:173–188

    Google Scholar 

  • Pickering FS, Reis P (1993) Effects of abomasal supplements of methionine on wool growth of grazing sheep. Aust J ExpAgric 33:7–12

    Article  CAS  Google Scholar 

  • Pimenta M, Kaneta K, Larondelle T, Dohmae Y, Kamiy N (1998) S-adenosyl-l-methionine: l-methionine S-methyltransferase from germinating barley. Purification and localization. Plant Physiol 118:431–438

    Article  PubMed  CAS  Google Scholar 

  • Poirier L (2002) The effects of diet, genetics and chemicals on toxicity and aberrant DNA methylation: an introduction. J Nutr 132:2336S–2339S

    PubMed  CAS  Google Scholar 

  • Ranocha P, McNeil S, Ziemak MJ, Li C, Tarczynski MC, Hanson AD (2001) The S-methylmethionine cycle in angiosperms: ubiquity, antiquity and activity. Plant J 25:575–584

    Article  PubMed  CAS  Google Scholar 

  • Ravanel S, Gakiere B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95:7805–7812

    Article  PubMed  CAS  Google Scholar 

  • Ravanel S, Block M, Rippert P, Jabrin S, Curien G, Rebeille F, Douce R (2004) Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem 279:22548–22557

    Article  PubMed  CAS  Google Scholar 

  • Rebeille F, Jabrin S, Bligny R, Loizeau K, Gambonnet B, Van Wilder V, Douce R, Ravanel S (2006) Methionine catabolism in Arabidopsis cells is initiated by a gamma-cleavage process and leads to S-methylcysteine and isoleucine syntheses. Proc Natl Acad Sci USA 103:15687–15692

    Article  PubMed  CAS  Google Scholar 

  • Riedel K, Mangelsdorf C, Streber W, Willmitzer L, Hoefgen R, Hesse H (1999) Cloning and characterization of cystathionine gamma synthase from Solanum tuberosum L. Plant Biol 1:638–644

    Article  CAS  Google Scholar 

  • Rinder J, Casazza AP, Hoefgen R, Hesse H (2008) Regulation of aspartate-derived amino acid homeostasis in potato plants (Solanum tuberosum L.) by expression of E. coli homoserine kinase. Amino Acids 34:213–222

    Article  PubMed  CAS  Google Scholar 

  • Roeder S, Dreschler K, Wirtz M et al (2009) SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers. Plant Mol Biol 70:535–546

    Article  PubMed  CAS  Google Scholar 

  • Roje S (2006) S-Adenosyl-l-methionine: beyond the universal methyl group donor. Phytochem 67:1686–1698

    Article  CAS  Google Scholar 

  • Saint-Girons I, Parsot C, Zakin MN, Barzu O, Cohen GN (1988) Methionine biosynthesis in enterobacteriaceae: biochemical, regulatory, and evolutionary aspects. CRC Crit Rev Biochem 23(suppl 1):S1–S42

    Article  PubMed  Google Scholar 

  • Saito K (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol 3:188–195

    PubMed  CAS  Google Scholar 

  • Saito K, Kurosawa M, Tatsuguchi K, Takagi Y, Murakoshi I (1994) Modulation of cysteine biosynthesis in chloroplasts of transgenic tobacco overexpressing cysteine synthase [O-acetylserine(thiol)-lyase]. Plant Physiol 106:887–895

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Aguayo I, Rodríguez-Galán JM, García R et al (2004) Salt stress enhances xylem development and expression of S-adenosyl-l-methionine synthase in lignifying tissues of tomato plants. Planta 220:278–285

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Kuwahara A, Nagano M, Narisawa T, Sakata A, Saito K, Hirai MY (2009) Omics-based approaches to methionine side chain elongation in Arabidopsis: characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase. Plant Cell Physiol 50:1181–1190

    Article  PubMed  CAS  Google Scholar 

  • Shaul O, Galili G (1992) Increased lysine synthesis in tobacco plants that express high levels of bacterial dihydrodipicolinate synthase in their chloroplasts. Plant J 2:203–209

    Article  CAS  Google Scholar 

  • Shen B, Li C, Tarczynski MC (2002) High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-l-methionine synthetase 3 gene. Plant J 29:371–380

    Article  PubMed  CAS  Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Article  PubMed  CAS  Google Scholar 

  • Stiller I, Dancs G, Hesse H, Hoefgen R, Bánfalvi Z (2007) Improving the nutritive value of tubers: elevation of cysteine and glutathione contents in the potato cultivar White Lady by marker-free transformation. J Biotechnol 128:335–343

    Article  PubMed  CAS  Google Scholar 

  • Tabe M, Droux M (2001) Sulfur assimilation in developing Lupin cotyledons could contribute significantly to the accumulation of organic sulfur reserves in the seed. Plant Physiol 126:176–187

    Article  PubMed  CAS  Google Scholar 

  • Tabe LM, Higgins TJ (1998) Engineering plant protein composition for improved nutrition. Trends Plant Sci 3:282–286

    Article  Google Scholar 

  • Textor S, de Kraker JW, Hause B, Gershenzon J, Tokuhisa JG (2007) MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiol 144:60–71

    Article  PubMed  CAS  Google Scholar 

  • Van Huysen T, Abdel-Ghany S, Hale KL et al (2003) Overexpression of cystathionine γ-synthase in Indian mustard enhances selenium volatilization. Planta 218:71–78

    Article  PubMed  CAS  Google Scholar 

  • Van Huysen T, Terry N, Pilon-Smits EA (2004) Exploring the selenium phytoremediation potential of transgenic Indian mustard overexpressing ATP sulfurylase or cystathionine Y-synthase. Int J Phytorem 6:111–118

    Article  CAS  Google Scholar 

  • Wandelt C, Rafiqul R, Khan I, Craig S, Schroeder HE, Spencer D, Higgins TJ (1992) Vicilin with carboxy terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J 2:181–192

    PubMed  CAS  Google Scholar 

  • Wirtz M, Hell R (2003) Production of cysteine for bacterial and plant biotechnology: application of cysteine feedback-insensitive isoforms of serine acetyltransferase. Amino Acids 24:195–203

    PubMed  CAS  Google Scholar 

  • Xu S, Harrison J, Chalupa W, Sniffen C, Julien W, Sato K, Fujieda T, Watanabe T, Ueda T, Suzuki K (1998) The effect of ruminal bypass lysine and methionine on milk yield and composition of lactating cows. Dairy Sci 81:1062–1077

    Article  CAS  Google Scholar 

  • Yang S, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yang S, Yip WK, Dong JG (1990) Mechanism and regulation of ethylene biosynthesis. Am Soc Plant Physiol 5:112–115

    Google Scholar 

  • Zeh M, Casazza A, Kreft O, Roessner U, Bieberich K, Willmitzer S, Hoefgen R, Hesse H (2001) Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants. Plant Physiol 127:792–802

    Article  PubMed  CAS  Google Scholar 

  • Zeh M, Leggewie G, Hoefgen R, Hesse H (2002) Cloning and characterization of a cDNA encoding a cobalamin-independent methionine synthase from potato (Solanum tuberosum L.). Plant Mol Biol 48:255–265

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Galili G (2003) Increased lysine synthesis coupled with a knockout of its catabolism synergistically boosts lysine content and also transregulates the metabolism of other amino acids in Arabidopsis seeds. Plant Cell 15:845–853

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Galili G (2004) Lysine metabolism is concurrently regulated by synthesis and catabolism in both reproductive and vegetative tissues. Plant Physiol 135:129–136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study on methionine metabolism was supported by the Israel Science Foundation (grants 566/02-1 and 231/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Amir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amir, R. Current understanding of the factors regulating methionine content in vegetative tissues of higher plants. Amino Acids 39, 917–931 (2010). https://doi.org/10.1007/s00726-010-0482-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0482-x

Keywords

Navigation