Skip to main content
Log in

Design and characterization of short antimicrobial peptides using leucine zipper templates with selectivity towards microorganisms

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Design of antimicrobial peptides with selective activity towards microorganisms is an important step towards the development of new antimicrobial agents. Leucine zipper sequence has been implicated in cytotoxic activity of naturally occurring antimicrobial peptides; moreover, this motif has been utilized for the design of novel antimicrobial peptides with modulated cytotoxicity. To understand further the impact of substitution of amino acids at ‘a’ and/or ‘d’ position of a leucine zipper sequence of an antimicrobial peptides on its antimicrobial and cytotoxic properties four short peptides (14-residue) were designed on the basis of a leucine zipper sequence without or with replacement of leucine residues in its ‘a’ and ‘d’ positions with d-leucine or alanine or proline residue. The original short leucine zipper peptide (SLZP) and its d-leucine substituted analog, DLSA showed comparable activity against the tested Gram-positive and negative bacteria and the fungal strains. The alanine substituted analog (ASA) though showed appreciable activity against the tested bacteria, it showed to some extent lower activity against the tested fungi. However, the proline substituted analog (PSA) showed lower activity against the tested bacterial or fungal strains. Interestingly, DLSA, ASA and PSA showed significantly lower cytotoxicity than SLZP against both human red blood cells (hRBCs) and murine 3T3 cells. Cytotoxic and bactericidal properties of these peptides matched with peptide-induced damage/permeabilization of mammalian cells and bacteria or their mimetic lipid vesicles suggesting cell membrane could be the target of these peptides. As evidenced by tryptophan fluorescence and acrylamide quenching studies the peptides showed similarities either in interaction or in their localization within the bacterial membrane mimetic negatively charged lipid vesicles. Only SLZP showed localization inside the mammalian membrane mimetic zwitterionic lipid vesicles. The results show significant scope for designing antimicrobial agents with selectivity towards microorganisms by substituting leucine residues at ‘a’ and/or ‘d’ positions of a leucine zipper sequence of an antimicrobial peptide with different amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PBS:

Phosphate buffered saline

FITC:

Fluorescin isothiocyanate

Fmoc:

N-(9-fluorenyl) methoxycarbonyl

DIC:

Differential interference contrast

HPLC:

High-performance liquid chromatography

ESI-MS:

Electron spray ionization- mass spectrometry

ANS:

8-Anilinonapthalene-1-sulfonic acid

DiS-C3-5:

3,3′-Dipropylthiadicarbocyanine iodide

References

  • Ahmad A, Yadav SP et al (2006) Utilization of an amphipathic leucine zipper sequence to design antibacterial peptides with simultaneous modulation of toxic activity against human red blood cells. J Biol Chem 281(31):22029–22038

    Article  PubMed  CAS  Google Scholar 

  • Ahmad A, Asthana N et al (2009a) Structure-function study of cathelicidin-derived bovine antimicrobial peptide BMAP-28: design of its cell-selective analogs by amino acid substitutions in the heptad repeat sequences. Biochim Biophys Acta 1788(11):2411–2420

    Article  PubMed  CAS  Google Scholar 

  • Ahmad A, Azmi S et al (2009b) Design of nontoxic analogues of cathelicidin-derived bovine antimicrobial peptide BMAP-27: the role of leucine as well as phenylalanine zipper sequences in determining its toxicity. Biochemistry 48(46):10905–10917

    Article  PubMed  CAS  Google Scholar 

  • Allen TM, Cleland LG (1980) Serum-induced leakage of liposome contents. Biochim Biophys Acta 597(2):418–426

    Article  PubMed  CAS  Google Scholar 

  • Asthana N, Yadav SP et al (2004) Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity. J Biol Chem 279(53):55042–55050

    Article  PubMed  CAS  Google Scholar 

  • Azmi S, Srivastava S et al (2013) Characterization of antimicrobial, cytotoxic, and antiendotoxin properties of short peptides with different hydrophobic amino acids at “a” and “d” positions of a heptad repeat sequence. J Med Chem 56(3):924–939

    Article  PubMed  CAS  Google Scholar 

  • Bhunia A, Mohanram H et al (2009) Lipopolysaccharide bound structures of the active fragments of fowlicidin-1, a cathelicidin family of antimicrobial and antiendotoxic peptide from chicken, determined by transferred nuclear Overhauser effect spectroscopy. Biopolymers 92(1):9–22

    Article  PubMed  CAS  Google Scholar 

  • Bolognesi B, Kumita JR et al (2010) ANS binding reveals common features of cytotoxic amyloid species. ACS Chem Biol 5(8):735–740

    Article  PubMed  CAS  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    Article  PubMed  CAS  Google Scholar 

  • Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38(3):217–225

    PubMed  CAS  PubMed Central  Google Scholar 

  • Castellano FN, Lakowicz JR (1998) A water-soluble luminescence oxygen sensor. Photochem Photobiol 67(2):179–183

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Guarnieri MT et al (2007) Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother 51(4):1398–1406

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Crisma M, Fasman GD et al (1984) Peptide models for beta-turns. A circular dichroism study. Int J Pept Protein Res 23(4):411–419

    Article  PubMed  CAS  Google Scholar 

  • Cudic M, Otvos L Jr (2002) Intracellular targets of antibacterial peptides. Curr Drug Targets 3(2):101–106

    Article  PubMed  CAS  Google Scholar 

  • Deslouches B, Islam K et al (2005) Activity of the de novo engineered antimicrobial peptide WLBU2 against Pseudomonas aeruginosa in human serum and whole blood: implications for systemic applications. Antimicrob Agents Chemother 49(8):3208–3216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ghosh JK, Ovadia M et al (1997) A leucine zipper motif in the ectodomain of Sendai virus fusion protein assembles in solution and in membranes and specifically binds biologically-active peptides and the virus. Biochemistry 36(49):15451–15462

    Article  PubMed  CAS  Google Scholar 

  • Giuliani A, Rinaldi AC (2011) Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell Mol Life Sci 68(13):2255–2266

    Article  PubMed  CAS  Google Scholar 

  • Greenfield N, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8(10):4108–4116

    Article  PubMed  CAS  Google Scholar 

  • Gustiananda M, Liggins JR et al (2004) Conformation of prion protein repeat peptides probed by FRET measurements and molecular dynamics simulations. Biophys J 86(4):2467–2483

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Haldar S, Raghuraman H et al (2010) Membrane interaction of the N-terminal domain of chemokine receptor CXCR1. Biochim Biophys Acta 1798(6):1056–1061

    Article  PubMed  CAS  Google Scholar 

  • Hultmark D (2003) Drosophila immunity: paths and patterns. Curr Opin Immunol 15(1):12–19

    Article  PubMed  CAS  Google Scholar 

  • Javadpour MM, Barkley MD (1997) Self-assembly of designed antimicrobial peptides in solution and micelles. Biochemistry 36(31):9540–9549

    Article  PubMed  CAS  Google Scholar 

  • Jiang Z, Kullberg BJ et al (2008) Effects of hydrophobicity on the antifungal activity of alpha-helical antimicrobial peptides. Chem Biol Drug Des 72(6):483–495

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Loew LM, Rosenberg I et al (1983) Diffusion potential cascade. Convenient detection of transferable membrane pores. Biochemistry 22(4):837–844

    Article  PubMed  CAS  Google Scholar 

  • Ma QQ, Lv YF et al (2013) Rational design of cationic antimicrobial peptides by the tandem of leucine-rich repeat. Amino Acids 44(4):1215–1224

    Article  PubMed  CAS  Google Scholar 

  • Matulis D, Baumann CG et al (1999) 1-Anilino-8-naphthalene sulfonate as a protein conformational tightening agent. Biopolymers 49(6):451–458

    Article  PubMed  CAS  Google Scholar 

  • Nicolas P (2009) Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J 276(22):6483–6496

    Article  PubMed  CAS  Google Scholar 

  • Pandey BK, Ahmad A et al (2010) Cell-selective lysis by novel analogues of melittin against human red blood cells and Escherichia coli. Biochemistry 49(36):7920–7929

    Article  PubMed  CAS  Google Scholar 

  • Pandey BK, Srivastava S et al (2011) Inducing toxicity by introducing a leucine-zipper-like motif in frog antimicrobial peptide, magainin 2. Biochem J 436(3):609–620

    Article  PubMed  CAS  Google Scholar 

  • Papo N, Braunstein A et al (2004) Suppression of human prostate tumor growth in mice by a cytolytic D-, L-amino acid peptide: membrane lysis, increased necrosis, and inhibition of prostate-specific antigen secretion. Cancer Res 64(16):5779–5786

    Article  PubMed  CAS  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462(1–2):55–70

    Article  PubMed  CAS  Google Scholar 

  • Sims PJ, Waggoner AS et al (1974) Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13(16):3315–3330

    Article  PubMed  CAS  Google Scholar 

  • Subbalakshmi C, Nagaraj R et al (1999) Biological activities of C-terminal 15-residue synthetic fragment of melittin: design of an analog with improved antibacterial activity. FEBS Lett 448(1):62–66

    Article  PubMed  CAS  Google Scholar 

  • Suh JY, Lee YT et al (1999) Structural and functional implications of a proline residue in the antimicrobial peptide gaegurin. Eur J Biochem 266(2):665–674

    Article  PubMed  CAS  Google Scholar 

  • Varkey J, Nagaraj R (2005) Antibacterial activity of human neutrophil defensin HNP-1 analogs without cysteines. Antimicrob Agents Chemother 49(11):4561–4566

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Weber G, Shinitzky M (1970) Failure of energy transfer between identical aromatic molecules on excitation at the long wave edge of the absorption spectrum. Proc Natl Acad Sci USA 65(4):823–830

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu CS, Ikeda K et al (1981) Ordered conformation of polypeptides and proteins in acidic dodecyl sulfate solution. Biochemistry 20(3):566–570

    Article  PubMed  CAS  Google Scholar 

  • Yadav SP, Kundu B et al (2003) Identification and characterization of an amphipathic leucine zipper-like motif in Escherichia coli toxin hemolysin E. Plausible role in the assembly and membrane destabilization. J Biol Chem 278(51):51023–51034

    Article  PubMed  CAS  Google Scholar 

  • Yadav SP, Ahmad A et al (2008) Inhibition of lytic activity of Escherichia coli toxin hemolysin E against human red blood cells by a leucine zipper peptide and understanding the underlying mechanism. Biochemistry 47(7):2134–2142

    Article  PubMed  CAS  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  PubMed  CAS  Google Scholar 

  • Zhu WL, Nan YH et al (2007a) Cell selectivity of an antimicrobial peptide melittin diastereomer with D-amino acid in the leucine zipper sequence. J Biochem Mol Biol 40(6):1090–1094

    Article  PubMed  CAS  Google Scholar 

  • Zhu WL, Song YM et al (2007b) Substitution of the leucine zipper sequence in melittin with peptoid residues affects self-association, cell selectivity, and mode of action. Biochim Biophys Acta 1768(6):1506–1517

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

CSIR-CDRI communication number of this manuscript is 8728. We are extremely grateful to Dr. S. K. Puri, Parasitology Division, CSIR-CDRI for kindly providing us fresh hRBCs for performing hemolytic activity assays with our peptides. The work was supported by the CSIR network projects NWP 0005 and BioDiscovery (BSC 0120). AA, SA, SS acknowledges the receipt of senior research fellowships from Council of Scientific and Industrial Research (CSIR), India; AK and JKT receipt of senior research fellowships from ICMR and UGC. The authors are extremely thankful to AL Vishwakarma for recoding the flow cytometry profiles and Sanjeev Kanojiya, Sophisticated Analytical Instrumentation Facility (SAIF), CSIR-CDRI for recording the ES-MS mass spectra.

Conflict of interest

The authors declare that they do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimut Kanti Ghosh.

Additional information

A. Ahmad and S. Azmi contributed equally to the work. S. Srivastava and A. Kumar contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 230 kb)

Supplementary material 2 (DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A., Azmi, S., Srivastava, S. et al. Design and characterization of short antimicrobial peptides using leucine zipper templates with selectivity towards microorganisms. Amino Acids 46, 2531–2543 (2014). https://doi.org/10.1007/s00726-014-1802-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1802-3

Keywords

Navigation