Skip to main content
Log in

Ovariectomy-Induced Osteoporosis Evaluated by 1H One- and Two-Dimensional NMR Transverse Relaxometry

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The aim of this work is to show that the bones with marrow, treated as a quasi-porous media, can be successfully used to study the effects of ovariectomy-induced osteoporosis. Proton one-dimensional (1D) nuclear magnetic resonance (NMR) T 2-distribution and two-dimensional (2D) T 2T 2 exchange maps combined with histological images were used to measure the proximal part of the femoris, diaphysis and distal epiphysis of ovariectomized and non-ovariectomized Wistar albino rats. The 1D normalized T 2 distributions showed four peaks which were associated with protons in four major pools: (1) the protons from bounded water to collagenous matrix; (2) fluids in osteocyte lacunae and canaliculi channels; (3) fluids in secondary pores like Haversian and transverse Volkmann canals and (4) soft matter like bone marrow and fluids in primary pores like trabecular bone cavities. The peak’s association and hierarchical structure of pores in femoral bone were supported by a 2D T 2T 2 exchange map and by a series of dehydration experiments monitored by NMR measurements. The bone marrow narrows the T 2-distributions, increasing resolution, but will not influence significantly the peaks positions; therefore, the NMR relaxometry is a valuable tool to characterize the pore distributions and effects of induced osteoporosis in diverse bones sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Koopman, M. Moreland, Arthritis and Allied Conditions: A Textbook of Rheumatology, 15th edn. (Lipincott Williams & Wilkins, Philadelphia, 2004), pp. 78–96

    Google Scholar 

  2. L. Cardoso, S.P. Fritton, G. Gailani, M. Benalla, S.C. Cowin, J. Biomech. 46, 253–265 (2013)

    Article  Google Scholar 

  3. E.A. Martin, E.L. Ritman, R.T. Turner, Bone 32, 261–267 (2003)

    Article  Google Scholar 

  4. C.C. Netto, V.C. Vieira, L.P. Marinheiro, S. Agellon, H. Weiler, M.R. Marostica Jr., Arq. Bras. Endocrinol. Metab. 56, 259–264 (2012)

    Article  Google Scholar 

  5. W.S.S. Jee, W. Yao, J. Musculoskel. Neuron. Interact. 1, 193–207 (2001)

    Google Scholar 

  6. D. Sharma, C. Ciani, P.A. Ramirez Marin, J.D. Levy, S.B. Doty, S.P. Fritton, Bone 51, 488–497 (2012)

    Article  Google Scholar 

  7. J.E.M. Brouwers, B. van Rietbergen, R. Huiskes, K. Ito, Osteoporos. Int. 20, 1823–1835 (2009)

    Article  Google Scholar 

  8. H.A. Tanriverdi, A. Barut, S. Sarikaya, Eur. J. Obstet. Gynecol. Reprod. Biol. 120, 63–68 (2005)

    Article  Google Scholar 

  9. M. Jablonski, V.M. Gun’ko, A.P. Golovan, R. Leboda, J. Skubiszewska-Zieba, R. Pluta, V.V. Turov, J. Colloid Interface Sci. 392, 446–462 (2013)

    Article  Google Scholar 

  10. R.I. Chelcea, R.S. Şipos, R. Fechete, D. Moldovan, I. Şuş, Z. Pávai, D.E. Demco, Sudia UBB Chemia LX (1), 57–70 (2015)

    Google Scholar 

  11. R.S. Şipos, R. Fechete, D. Moldovan, I. Şuş, S. Szasz, Z. Pávai, Open. Life Sci. 10, 379–387 (2015)

    Google Scholar 

  12. R.S. Şipoş, R. Fechete, R.I. Chelcea, D. Moldovan, Z. Pap, Z. Pávai, D.E. Demco, Rom. J. Morphol. Embryol. 56(2), 743–752 (2015)

    Google Scholar 

  13. P. Fantazzini, C. Garavaglia, M. Palombarini, R.J.S. Brown, G. Giavaresi, R. Giardino, Magn. Reson. Imaging 22, 689–695 (2004)

    Article  Google Scholar 

  14. T.M. Link, S. Majumdar, P. Augat, J.C. Lin, D. Newitt, Y. Lu, N.E. Lane, H.K. Genant, J. Bone Miner. Res. 13, 1175–1182 (1998)

    Article  Google Scholar 

  15. S. Majumdar, H.K. Genant, Osteoporosis Int. 5, 79–92 (1995)

    Article  Google Scholar 

  16. S. Anumula, S.L. Wehrli, J. Magland, A.C. Wright, F.W. Wehrli, Bone 46, 1391–1399 (2010)

    Article  Google Scholar 

  17. R.A. Horch, J.S. Nyman, D.F. Gochberg, R.D. Dortch, M.D. Does, Magn. Reson. Med. 64, 680–687 (2010)

    Article  Google Scholar 

  18. R.A. Horch, D.F. Gochberg, J.S. Nyman, M.D. Does, Magn. Reson. Med. 68, 1774–1784 (2012)

    Article  Google Scholar 

  19. Q. Ni, A. De Los Santos, H. Lam, Y.X. Qin, Adv. Sp. Res. 40, 1703–1710 (2007)

    Article  ADS  Google Scholar 

  20. R.A. Horch, D.F. Gochberg, J.S. Nyman, M.D. Does, PLoS One 6(e16359), 1–5 (2011)

    Google Scholar 

  21. J.S. Nyman, Q. Ni, D.P. Nicolella, X. Wang, Bone 42, 193–199 (2008)

    Article  Google Scholar 

  22. F.W. Wehrli, J. Magn. Reson. 229, 35–48 (2013)

    Article  ADS  Google Scholar 

  23. J.S. Nyman, A. Roy, X. Shen, R.L. Acuna, J.H. Tyler, X. Wang, J. Biomech. 39, 931–938 (2006)

    Article  Google Scholar 

  24. W.C. Bae, P.C. Chen, C.B. Chung, K. Masuda, D. D’Lima, J. Du, J. Bone Miner. Res. 27, 848–857 (2012)

    Article  Google Scholar 

  25. R. Biswas, W. Bae, E. Diaz, K. Masuda, C.B. Chung, G.M. Bydder, J. Du, Bone 50, 749–755 (2012)

    Article  Google Scholar 

  26. R.A. Horch, J.C. Gore, M.D. Does, Magn. Reson. Med. 66, 24–31 (2011)

    Article  Google Scholar 

  27. J.S. Nyman, L.E. Gorochow, R.A. Horch, S. Uppuganti, A. Zein-Sabatto, M.K. Manhard, M.D. Does, J. Mech. Behav. Biomed. Mater. 22, 136–145 (2013)

    Article  Google Scholar 

  28. P.A. Timmins, J.C. Wall, Bone Water Calcif. Tissue Res. 23, 1–5 (1977)

    Article  Google Scholar 

  29. N.A. Andreollo, E.F. Santos, M.R. Araújo, L.R. Lopes, ABCD Arq. Bras. Cir. Dig. 25, 49–51 (2012)

    Article  Google Scholar 

  30. P. Sengupta, Biomed. Int. 2, 81–89 (2011)

    Google Scholar 

  31. R.S. Sipos, Z. Pap, A.S. Szalai, I. Sus, A.V. Gabor, Z. Pavai, K. Branzaniuc, Acta Med. Marisiensis 56, 479–483 (2010)

    Google Scholar 

  32. L. Monteilhet, J.P. Korb, J. Mitchell, P.J. McDonald, Phys. Rev. E 74, 061404 (2006)

    Article  ADS  Google Scholar 

  33. L. Venkataramanan, Y.Q. Song, M.D. Hurlimann, IEEE Trans. Sign. Proc. 50, 1017–1026 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  34. Y.Q. Song, L. Venkataramanan, M.D. Hürlimann, M. Flaum, P. Frulla, C. Straley, Magn. Reson. 154, 261–268 (2002)

    Article  ADS  Google Scholar 

  35. M.D. Hürlimann, M. Flaum, L. Venkataramanan, C. Flaum, R. Freedman, G.J. Hirasaki, Magn. Reson. Imag. 21, 305–310 (2003)

    Article  Google Scholar 

  36. K.E. Washburn, P.T. Callaghan, Phys. Rev. Lett. 97, 175502 (2006)

    Article  ADS  Google Scholar 

  37. D. Moldovan, R. Fechete, D.E. Demco, E. Culea, B. Blümich, Diffus. Fundam. 10, 20.1–20.3 (2009)

    Google Scholar 

  38. R. Fechete, D. Moldovan, D.E. Demco, B. Blümich, Diffus. Fundam. 10, 14.1–14.3 (2009)

    Google Scholar 

  39. K.E. Washburn, P.T. Callaghan, J. Magn. Reson. 186, 337–340 (2007)

    Article  ADS  Google Scholar 

  40. E. Tonning, D. Polders, P.T. Callaghan, S.B. Engelsen, J. Magn. Reson. 188, 10–23 (2007)

    Article  ADS  Google Scholar 

  41. G.C. Borgia, R.J.S. Brown, P. Fantazzini, J. Magn. Reson. 147, 273–285 (2000)

    Article  ADS  Google Scholar 

  42. P. Fantazzini, R.J.S. Brown, G.C. Borgia, Magn. Reson. Imaging 21, 227–234 (2003)

    Article  Google Scholar 

  43. D. Moldovan, R. Fechete, D.E. Demco, E. Culea, B. Blümich, V. Herrmann, M. Heinz, Macromol. Chem. Phys. 211, 1579–1594 (2010)

    Article  Google Scholar 

  44. D. Moldovan, R. Fechete, D.E. Demco, E. Culea, B. Blümich, V. Herrmann, M. Heinz, J. Magn. Reson. 208, 156–162 (2011)

    Article  ADS  Google Scholar 

  45. Z.F. Zhang, L.Z. Xiao, H.B. Liu, F. Deng, X. Li, T.L. An, V. Anferov, S. Anferova, Appl. Magn. Reson. 44, 849–857 (2013)

    Article  Google Scholar 

  46. S.C. Cowin, G. Gailani, M. Benalla, Philos. Trans. R. Soc. A 367, 3401–3444 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  47. W.F. Neuman, T.Y. Toribara, B.J. Mulryan, J. Am. Chem. Soc. 75, 4239–4242 (1953)

    Article  Google Scholar 

  48. F.W. Wehrli, M.A. Fernandez-Seara, Ann. Biomed. Eng. 33, 79–86 (2005)

    Article  Google Scholar 

  49. S.M. Tommasini, A. Trinward, A.S. Acerbo, F. Carlo, L.M. Miller, S. Judex, Bone 50, 596–604 (2012)

    Article  Google Scholar 

  50. H. Fonseca, D. Moreira-Gonçalves, M. Vaz, M.H. Fernandes, R. Ferreira, F. Amado, M.P. Mota, J.A. Duarte, J. Bone Miner. Metab. 30, 281–292 (2012)

    Article  Google Scholar 

  51. Y. Uyar, Y. Baytur, U. Inceboz, B.C. Demir, G. Gumuser, K. Ozbilgin, Maturitas 63, 261–267 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of Romanian National Authority for Scientific Research, CNCS-UEFISCDI, Project Number PN-II-IDEI-307/2011. R. F. would like to acknowledge Prof. Bernhard Blümich for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Fechete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şipos, R.S., Fechete, R., Moldovan, D. et al. Ovariectomy-Induced Osteoporosis Evaluated by 1H One- and Two-Dimensional NMR Transverse Relaxometry. Appl Magn Reson 47, 1419–1437 (2016). https://doi.org/10.1007/s00723-016-0839-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0839-8

Keywords

Navigation