Skip to main content
Log in

Internal Magnetic Field Gradients in Heterogeneous Porous Systems: Comparison Between Spin-Echo and Diffusion Decay Internal Field (DDIF) Method

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Two techniques used for evaluating internal magnetic field gradient (G i), spin-echo (SE) and diffusion decay internal field (DDIF), were investigated at 9.4 T and compared in porous systems characterized by different pores size ranging from 4 to 96 μm with magnetic susceptibility difference between solid and liquid phase, \(\Delta \chi\) ≈ 1.6 ppm. Since diffusion of a fluid in a solid porous matrix plays a role in both SE and DDIF methods, we investigated these two different methods by highlighting their dependence on characteristic parameters and length scales used to describe diffusion behavior of fluids in porous systems. Therefore, G i behavior as a function of the dephasing length (l g), diffusion length (l d) and pores size (l s) was obtained. Moreover G i was evaluated by using both free diffusion and measured apparent diffusion coefficient of water, to quantify diffusion effect in different porous samples. This study gives more insight into the physical dynamics process to explain contrast mechanisms recently exploited by DDIF and SE applications for cancellous bone quality measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Hurlimann, J. Magn. Reson. 131, 232–240 (1998). doi:10.1006/jmre.1998.1364

    Article  ADS  Google Scholar 

  2. K.E. Washburn, C.D. Eccles, P.T. Callaghan, J. Magn. Reson. 194, 33–40 (2008). doi:10.1016/j.jmr.2008.05.025

    Article  ADS  Google Scholar 

  3. J. Petković, H. Huinink, L. Pel, K. Kopinga, J. Magn. Reson. 167, 97–106 (2004). doi:10.1016/j.jmr.2003.11.007

    Article  ADS  Google Scholar 

  4. R.J. Brown, P. Fantazzini, Phys. Rev. B Condens. Matter Mater. Phys 47, 14823–14834 (1993). doi:10.1103/PhysRevB.47.14823

    Article  ADS  Google Scholar 

  5. S. De Santis, G. Di Pietro, M. Rebuzzi, S. Capuani, Diffus. Fundam. 14, 1–4 (2010)

    Google Scholar 

  6. H.Y. Carr, E.M. Purcell, Phys. Rev. 94, 630–638 (1954). doi:10.1103/PhysRev.94.630

    Article  ADS  Google Scholar 

  7. A.T. Watson, C.T.P. Chang, Prog. Nucl. Magn. Reson. Spectrosc. 31, 343–386 (1997). doi:10.1016/S0079-6565(97)00053-8

    Article  Google Scholar 

  8. S. Capuani, C. Rossi, M. Alesiani, B. Maraviglia, Solid State Nucl. Magn. Reson. 28, 266–272 (2005). doi:10.1016/j.ssnmr.2005.11.001

    Article  Google Scholar 

  9. S. Capuani, Microporous Mesoporous Mater. 178, 34–38 (2013). doi:10.1016/j.micromeso.2013.05.016

    Article  Google Scholar 

  10. S. Capuani, E. Piccirilli, G. Di Pietro, M. Celi, U. Tarantino, Aging Clin. Exp. Res. 25, 51–54 (2013). doi:10.1007/s40520-013-0095-9

    Article  Google Scholar 

  11. G. Manenti, S. Capuani, E. Fanucci, E.P. Assako, S. Masala, R. Sorge, R. Iundusi, U. Tarantino, G. Simonetti, Bone 55, 7–15 (2013). doi:10.1016/j.bone.2013.03.004

    Article  Google Scholar 

  12. M. Palombo, A. Gabrielli, S. De Santis, S. Capuani, J. Magn. Reson. 216, 28–36 (2012). doi:10.1016/j.jmr.2011.12.023

    Article  ADS  Google Scholar 

  13. J.G. Seland, G.H. Sørland, K. Zick, B. Hafskjold, J. Magn. Reson. 146, 14–19 (2000). doi:10.1006/jmre.2000.2101

    Article  ADS  Google Scholar 

  14. G. Zheng, W.S. Price, J. Magn. Reson. 195, 40–44 (2008). doi:10.1016/j.jmr.2008.08.002

    Article  ADS  Google Scholar 

  15. G. Zheng, W.S. Price, Concepts Magn. Reson. Part A 30, 261–277 (2007). doi:10.1002/cmr.a.20092

    Article  Google Scholar 

  16. J. Mitchell, T.C. Chandrasekera, L.F. Gladden, J. Chem. Phys. 132, 244705 (2010). doi:10.1063/1.3446805

    Article  ADS  Google Scholar 

  17. J. Mitchell, T.C. Chandrasekera, M.L. Johns, L.F. Gladden, E.J. Fordham, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81, 026101 (2010). doi:10.1103/PhysRevE.81.026101

    Article  ADS  Google Scholar 

  18. H. Chung, F.W. Wehrli, J.L. Williams, S.D. Kugelmass, Proc. Natl. Acad. Sci. USA 90, 10250–10254 (1993). doi:10.1073/pnas.90.21.10250

    Article  ADS  Google Scholar 

  19. S.N. Hwang, F.W. Wehrli, J. Magn. Reson. 139, 35–45 (1999). doi:10.1006/jmre.1999.1744

    Article  ADS  Google Scholar 

  20. P. Mertens, J. Machann, B. Mueller-Bierl, G. Steidle, M.E. Bellemann, F. Schick, Med. Phys. 35, 1777–1784 (2008). doi:10.1118/1.2896079

    Article  Google Scholar 

  21. P.N. Sen, S. Axelrod, J. Appl. Phys. 86, 4548–4554 (1999). doi:10.1063/1.371401

    Article  ADS  Google Scholar 

  22. S. Capuani, M. Alesiani, F. Alessandri, B. Maraviglia, Magn. Reson. Imaging 19, 319–323 (2001). doi:10.1016/S0730-725X(01)00243-0

    Article  Google Scholar 

  23. S. Capuani, F. Curzi, F.M. Alessandri, B. Maraviglia, A. Bifone, Magn. Reson. Med. 46, 683–689 (2001). doi:10.1002/mrm.1246

    Article  Google Scholar 

  24. S. De Santis, M. Rebuzzi, G. Di Pietro, F. Fasano, B. Maraviglia, S. Capuani, Phys. Med. Biol. 55, 5767–5785 (2010). doi:10.1088/0031-9155/55/19/010

    Article  Google Scholar 

  25. M. Rebuzzi, V. Vinicola, F. Taggi, U. Sabatini, F.W. Wehrli, S. Capuani, Bone 57, 155–163 (2013). doi:10.1016/j.bone.2013.07.027

    Article  Google Scholar 

  26. Y.-Q. Song, J. Magn. Reson. 143, 397–401 (2000). doi:10.1006/jmre.1999.2012

    Article  ADS  Google Scholar 

  27. Y.-Q. Song, S. Ryu, P.N. Sen, Nature 406, 178–181 (2000). doi:10.1038/35018057

    Article  ADS  Google Scholar 

  28. Y.-Q. Song, Magn. Reson. Imaging 19, 417–421 (2001). doi:10.1016/S0730-725X(01)00259-4

    Article  Google Scholar 

  29. Q. Chen, Y.-Q. Song, J. Chem. Phys. 116, 8247–8250 (2002). doi:10.1063/1.1477183

    Article  ADS  Google Scholar 

  30. Y.-Q. Song, Concepts Magn. Reson. Part A 18A, 97–110 (2003). doi:10.1002/cmr.a.10072

    Article  Google Scholar 

  31. E.E. Sigmund, H. Cho, P. Chen, S. Byrnes, Y.-Q. Song, X.E. Guo, T.R. Brown, Magn. Reson. Med. 59, 28–39 (2008). doi:10.1002/mrm.21281

    Article  Google Scholar 

  32. H. Cho, S. Ryu, J.L. Ackerman, Y.-Q. Song, J. Magn. Reson. 198, 88–93 (2009). doi:10.1016/j.jmr.2009.01.024

    Article  ADS  Google Scholar 

  33. E.E. Sigmund, H. Cho, Y.-Q. Song, NMR Biomed. 22, 436–448 (2009). doi:10.1002/nbm.1354

    Article  Google Scholar 

  34. A.R. Mutina, V.D. Skirda, J. Magn. Reson. 188, 122–128 (2007). doi:10.1016/j.jmr.2007.05.007

    Article  ADS  Google Scholar 

  35. S. Majumdar, J.C. Gore, J. Magn. Reson. (1969–1992) 78, 41–55 (1988). doi:10.1016/0022-2364(88)90155-2

    Article  ADS  Google Scholar 

  36. S. Muncaci, I. Ardelean, Appl. Magn. Reson. 44, 837–848 (2013)

    Article  Google Scholar 

  37. S. Muncaci, I. Ardelean, Appl. Magn. Reson. 44, 365–373 (2013)

    Article  Google Scholar 

  38. S. M. Sprinkhuizen, J. L. Ackerman, Y.-Q. Song, Magn. Reson. Med. (online version) (2013) doi:10.1002/mrm.25061

  39. E.L. Hahn, Phys. Rev. 80, 580–594 (1950). doi:10.1103/PhysRev.80.580

    Article  MATH  ADS  Google Scholar 

  40. H. Zhang, L.R. Moore, M. Zborowski, P.S. Williams, S. Margel, J.J. Chalmers, Analyst 130, 514–527 (2005). doi:10.1039/b412723d

    Article  ADS  Google Scholar 

  41. T. Amitay-Rosen, A. Cortis, B. Berkowitz, Environ. Sci. Technol. 39(18), 7208–7216 (2005). doi:10.1021/es048788z

    Article  ADS  Google Scholar 

  42. M. Hurlimann, K. Helmer, T. Deswiet, P. Sen, J. Magn. Reson. Ser. A 113, 260–264 (1995). doi:10.1006/jmra.1995.1091

    Article  ADS  Google Scholar 

  43. M. Palombo, A. Gabrielli, S. De Santis, C. Cametti, G. Ruocco, S. Capuani, J. Chem. Phys. 135, 034504 (2011). doi:10.1063/1.3610367

    Article  ADS  Google Scholar 

  44. M. Palombo, A. Gabrielli, V.D.P. Servidio, G. Ruocco, S. Capuani, Sci. Rep. 3, 2631 (2013). doi:10.1038/srep02631

    Article  ADS  Google Scholar 

  45. J. Zhong, R.P. Kennan, J.C. Gore, J. Magn. Reson. (1969–1992) 95, 267–280 (1991). doi:10.1016/0022-2364(91)90217-H

    Article  ADS  Google Scholar 

  46. K.R. Brownstein, C. Tarr, Phys. Rev. A At. Mol. Opt. Phys. 19, 2446 (1979). doi:10.1103/PhysRevA.19.2446

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Capuani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Pietro, G., Palombo, M. & Capuani, S. Internal Magnetic Field Gradients in Heterogeneous Porous Systems: Comparison Between Spin-Echo and Diffusion Decay Internal Field (DDIF) Method. Appl Magn Reson 45, 771–784 (2014). https://doi.org/10.1007/s00723-014-0556-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0556-0

Keywords

Navigation