Skip to main content
Log in

Crucial Role of Site Disorder and Frustration in Unusual Magnetic Properties of Quasi-2D Triangular Lattice Antimonate Na4FeSbO6

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The effect of antisite disorder in the layered sodium iron antimonate Na4FeSbO6 was examined both experimentally and theoretically. The magnetic susceptibility and specific heat measurements show that Na4FeSbO6 does not undergo a long-range antiferromagnetic order, unlike its structural analog Li4FeSbO6. The electron spin resonance yields the complicated picture of coexistence of two magnetic subsystems corresponding to two different Fe cation positions in the lattice (regular and antisite) and driving the magnetic properties of the Na4FeSbO6. This conclusion found perfect confirmation from both the Mössbauer and X-ray absorption data which show the presence of two kinds of Fe3+ ions being in high-spin Fe3+ (S = 5/2) and low-spin Fe3+ (S = 1/2) states. These findings arise from the antisite disorder between the Fe3+ and Sb5+ ions in the (NaFeSbO6)3− layers of Na4FeSbO6. Our density functional calculations show that the Fe3+ ions located at the Sb5+ sites exist as low-spin Fe3+ ions, and that the spins of each Fe3+ (S = 5/2)–Fe3+ (S = 1/2)–Fe3+ (S = 5/2) trimer generated by the antisite disorder has a ferrimagnetic arrangement Fe3+↑–Fe3+↓–Fe3+↑, which enhances the magnetization of Na4FeSbO6 and leads to an apparently positive Curie–Weiss temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801–976 (1986)

    Article  ADS  Google Scholar 

  2. A.P. Ramirez, Annu. Rev. Mater. Sci. 24, 453–480 (1994)

    Article  ADS  Google Scholar 

  3. J.E. Greedan, J. Mater. Chem. 11, 37–53 (2001)

    Article  Google Scholar 

  4. F.J. Berry, A. Labarta, X. Obradors, R. Rodriguez, M.I. Sarson, J. Tejada, Hyperfine Interact. 41, 463–466 (1988)

    Article  ADS  Google Scholar 

  5. A. Labarta, R. Rodriguez, L. Balcells, J. Tejada, X. Obradors, F.J. Berry, Phys. Rev. B 44, 691–698 (1991)

    Article  ADS  Google Scholar 

  6. M.T. Causa, M. Tovar, X. Obradors, A. Labarta, J. Tejada, Phys. Rev. B 44, 4455–4460 (1991)

    Article  ADS  Google Scholar 

  7. X. Wang, D.A. Vander Griend, C.L. Stern, K.R. Poeppelmeier, J. Alloys Comp. 298, 119–124 (2000)

    Article  Google Scholar 

  8. V. Likodimos, N. Guskos, S. Glenis, R. Szymczak, A. Bezkrovnyi, M. Wabia, J. Typek, G. Gasiorek, M. Kurzawa, I. Rychlowska-Himmel, A. Blonska-Tabero, Eur. Phys. J. B 38, 13–18 (2004)

    Article  ADS  Google Scholar 

  9. N. Guskos, V. Likodimos, S. Glenis, G. Zolnierkiewicz, J. Typec, R. Szymczak, A. Blonska-Tabero, J. Appl. Phys. 101, 103922 (2007)

    Article  ADS  Google Scholar 

  10. R. Rodriguez, A. Fernandez, A. Isalgue, J. Rodriguez, A. Labarta, J. Tejada, X.J. Obradors, Phys. C 18, L401–L405 (1985)

    Article  ADS  Google Scholar 

  11. P.D. Battle, T.C. Gibb, A.J. Herod, S.-H. Kim, P.H. Munns, J. Mater. Chem. 5, 865–870 (1995)

    Article  Google Scholar 

  12. A.P. Ramirez, B. Hessen, M. Winklemann, Phys. Rev. Lett. 84, 2957–2960 (2000)

    Article  ADS  Google Scholar 

  13. X. Obradors, A. Labarta, A. Isalgue, J. Tejada, J. Rodriguez, M. Pernet, Solid State Commun. 65, 189–192 (1988)

    Article  ADS  Google Scholar 

  14. N.P. Raju, E. Gmelin, R.K. Kremer, Phys. Rev. B 46, 5405–5411 (1992)

    Article  ADS  Google Scholar 

  15. A.S. Wills, A.J. Harrison, Chem. Soc. Faraday Trans. 92, 2161–2165 (1996)

    Article  Google Scholar 

  16. A.S. Wills, A. Harrison, C. Ritter, R.I. Smith, Phys. Rev. B 61, 6156–6169 (2000)

    Article  ADS  Google Scholar 

  17. K. Hirota, Y. Nakazawa, M. Ishikawa, J. Phys. Cond. Matter. 3, 4721–4730 (1991)

    Article  ADS  Google Scholar 

  18. M. Bieringer, J.E. Greedan, G.M. Luke, Phys. Rev. B. 62, 6521–6529 (2000)

    Article  ADS  Google Scholar 

  19. P.-H.T. Nguyen, F. Ramezanipour, J.E. Greedan, L.M.D. Cranswick, S. Derakhshan, Inorg. Chem. 51, 11493–11499 (2012)

    Article  Google Scholar 

  20. A.F. Wells, Structural Inorganic Chemistry (Clarendon Press, Oxford, 1986)

    Google Scholar 

  21. A.R. West, Solid State Chemistry and Its Applications (John Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapore, 1984)

    Google Scholar 

  22. L. Minervini, R.W. Grimes, K.E.J. Sickafus, Amer. Ceram. Soc. 83, 1873–1878 (2000)

    Article  Google Scholar 

  23. G.D. Blundred, C.A. Bridges, M.J. Rosseinsky, Angew. Chem. Int. Ed. 43, 3562–3565 (2004)

    Article  Google Scholar 

  24. M.S. Islam, R. Dominko, C. Masquelier, C. Sirisopanaporn, A.R. Armstrong, P.G. Bruce, J. Mater. Chem. 21, 9811–9818 (2011)

    Article  Google Scholar 

  25. C.A.J. Fisher, N. Kuganathan, M.S.J. Islam, Mater. Chem. A 1, 4207–4214 (2013)

    Article  Google Scholar 

  26. X. Guo, M. Wang, X. Huang, P. Zhao, X. Liu, R.J. Che, Mater. Chem. A 1, 8775–8781 (2013)

    Article  Google Scholar 

  27. V.V. Politaev, V.B. Nalbandyan, Sol. State Sci. 11, 144–150 (2009)

    Article  ADS  Google Scholar 

  28. E.A. Zvereva, O.A. Savelieva, Y.D. Titov, M.A. Evstigneeva, V.B. Nalbandyan, C.N. Kao, J.-Y. Lin, I.A. Presniakov, A.V. Sobolev, S.A. Ibragimov, M. Abdel-Hafiez, Y. Krupskaya, C. Jähne, G. Tan, R. Klingeler, B. Büchner, A.N. Vasiliev, Dalton Trans 42, 1550–1566 (2013)

    Article  Google Scholar 

  29. M.-H. Whangbo, H.-J. Koo, D. Dai, J. Solid State Chem. 176, 417–481 (2003)

    Article  ADS  Google Scholar 

  30. H.J. Xiang, C. Lee, H.-J. Koo, X.G. Gong, M.-H. Whangbo, Dalton Trans. 42, 823–853 (2013)

    Article  Google Scholar 

  31. M.E. Matsnev, V.S. Rusakov, AIP Conf. Proc. 1489, 178–179 (2012)

    Article  ADS  Google Scholar 

  32. Y.-J. Chen, M.G. Jiang, C.W. Luo, J.-Y. Lin, K.H. Wu, J.M. Lee, J.M. Chen, Y.K. Kuo, J.Y. Juang, C.Y. Mou, Phys. Rev. B 88, 134525 (2013)

    Article  ADS  Google Scholar 

  33. R.D. Shannon, Acta Crystallogr., Sect. A 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  34. W. Schmidt, R. Berthelot, L. Etienne, A. Wattiaux, M.A. Subramanian, Mater. Res Bull. 50, 292–296 (2014)

    Article  Google Scholar 

  35. J.B. Goodenough, Magnetism and the Chemical Bond (Robert E. Krieger Publishing Company, Huntington, NY, 1976) 

  36. G.A. Bain, J.F. Berry, J. Chem. Educ. 85, 532–536 (2008)

    Article  Google Scholar 

  37. V.B. Nalbandyan, M. Avdeev, M.A. Evstigneeva, J. Solid State Chem. 199, 62–65 (2013)

    Article  ADS  Google Scholar 

  38. A. Tari, The Specific Heat of Matter at Low Temperature (Imperial College Press, London, 2003)

    Book  Google Scholar 

  39. V.A. Ivanshin, J. Deisenhofer, H.-A. Krug von Nidda, A. Loidl, A. Mukhin, J. Balbashov, M.V. Eremin, Phys. Rev. B 61, 6213–6219 (2000)

    Article  ADS  Google Scholar 

  40. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970)

    Google Scholar 

  41. W. Low, Paramagnetic Resonance of Solids (Academic Press Inc., New York, 1960)

  42. C.R. Kurkjian, E.A. Sigety, Phys. Chem. Glasses 9, 73 (1968)

    Google Scholar 

  43. D. Loveridge, S. Parke, Phys. Chem. Glasses 12, 90 (1971)

    Google Scholar 

  44. E. Dormann, V. Jaccarino, Phys. Lett. 48A, 81 (1974)

    Article  ADS  Google Scholar 

  45. S.B. Oseroff, Phys. Rev. B 25, 6584 (1982)

    Article  ADS  Google Scholar 

  46. S. Viticoli, D. Fiorani, M. Nogués, J.L. Dormann, Phys. Rev. B 26, 6085 (1982)

    Article  ADS  Google Scholar 

  47. E.A. Zvereva, O.A. Savelieva, A.E. Primenko, S.A. Ibragimov, E.I. Slyn’ko, V.E. Slyn’ko, J. Appl. Phys. 108, 093923 (2010)

    Article  ADS  Google Scholar 

  48. D.L. Huber, Phys. Rev. B 6, 3180 (1972)

    Article  ADS  Google Scholar 

  49. K. Kawasaki, Prog. Theor. Phys. 39, 285–311 (1968)

    Article  ADS  Google Scholar 

  50. K. Kawasaki, Phys. Lett. 26A, 543 (1968)

    Article  ADS  Google Scholar 

  51. P.M. Richards, Solid State Commun. 13, 253–256 (1973)

    Article  ADS  Google Scholar 

  52. A.G. Anders, S.V. Volotski, J. Magn. Magn. Mater. 31–34, 1169–1170 (1983)

    Article  Google Scholar 

  53. E.A. Zvereva, M.A. Evstigneeva, V.B. Nalbandyan, O.A. Savelieva, S.A. Ibragimov, O.S. Volkova, L.I. Medvedeva, A.N. Vasiliev, R. Klingeler, B. Büchner, Dalton Trans. 41, 572–580 (2012)

    Article  Google Scholar 

  54. E.A. Zvereva, V.B. Nalbandyan, M.A. Evstigneeva, H.-J. Koo, M.-H. Whangbo, A.V. Ushakov, B.S. Medvedev, L.I. Medvedeva, N.A. Gridina, G.E. Yalovega, A.V. Churikov, A.N. Vasiliev, B. Büchner, J. Solid State Chemistry 225, 89–96 (2015)

    Article  Google Scholar 

  55. F. Menil, J. Phys. Chem. Solids 46, 763–789 (1985)

    Article  ADS  Google Scholar 

  56. P. Gütlich, E. Bill, A.X. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry (Fundamentals and Applications) (Springer, Berlin, 2012)

    Google Scholar 

  57. D.H. Kim, H.J. Lee, G. Kim, Y.S. Koo, J.H. Jung, H.J. Shin, J.-Y. Kim, J.-S. Kang, Phys. Rev. B 79, 033402 (2009)

    Article  ADS  Google Scholar 

  58. E. Stavitski, F.M. de Groot, Micron 41, 687 (2010)

    Article  Google Scholar 

  59. J.P. Crocombette, M. Pollak, F. Jollet, N. Thromat, M. Gautier-Soyer, Phys. Rev. B 52, 3143 (1995)

    Article  ADS  Google Scholar 

  60. G. Kresse, J. Hafner, Phys. Rev. B 47, 558–561 (1993)

    Article  ADS  Google Scholar 

  61. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  62. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  Google Scholar 

  63. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  64. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505–1509 (1998)

    Article  ADS  Google Scholar 

  65. D. Dai, M.-H. Whangbo, J. Chem. Phys. 114, 2887–2893 (2001)

    Article  ADS  Google Scholar 

  66. D. Dai, M.-H. Whangbo, J. Chem. Phys. 118, 29–39 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

E.A.Z. and V.B.N. appreciate support from the Russian Foundation for Basic Research (grants 14-02-00245, 11-03-01101). J.-Y.L. acknowledges support from MOE-ATU and National Science Council of Taiwan under Grant No. NSC98-2112-009-005-MY3. The work at NCSU was supported by the computing resources of the NERSC Center and the HPC Center of NCSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Zvereva.

Appendix

Appendix

See Figs. 13, 14, 15, 16, 17 and Tables 4, 5, 6, 7.

Fig. 13
figure 13

Temperature dependence of the inverse magnetic susceptibility corrected by temperature-independent term χ d under variation of χ d value

Fig. 14
figure 14

Distribution functions of the quadrupole splitting p(Δ) (circles) and the isomer shift p(δ) (triangles)

Fig. 15
figure 15

Energy vs. 10Dq for various spin states with J H = 0.7 eV

Fig. 16
figure 16

Energy vs. 10Dq for various spin states with J H = 0.8 eV

Fig. 17
figure 17

Unit cell of the (NaFeSbO6)3− layer containing the antisite defects between Fe3+ and Sb5+ ions. The blue circles represent the Fe3+ ions, the cyan circles the Sb5+ ions, the yellow circles the Na atoms, and white circles the O atoms. The oxygen atoms numbered 1–20 are used to specify the Fe–O bond lengths and their magnetic moments. Note that the Fe(1) atom is located at an Sb5+ ion site (color figure online)

Table 4 Atomic coordinates for the two structural models of Na4FeSbO6
Table 5 Principal interatomic distances (Å) for the models listed in Table 4 in comparison with sums of ionic radii [33]
Table 6 Fe–O bond distances (in Å) of the four different FeO6 octahedra in the relaxed structure of Na4FeSbO6 obtained from the DFT + U calculations for its FM state
Table 7 Magnetic moments (in µ B) on the Fe and O atoms of the four different FeO6 octahedra in the relaxed structure of Na4FeSbO6 obtained from DFT + U calculations for its FM state

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvereva, E.A., Presniakov, I.A., Whangbo, MH. et al. Crucial Role of Site Disorder and Frustration in Unusual Magnetic Properties of Quasi-2D Triangular Lattice Antimonate Na4FeSbO6 . Appl Magn Reson 46, 1121–1145 (2015). https://doi.org/10.1007/s00723-015-0700-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0700-5

Keywords

Navigation