Skip to main content
Log in

Britholite-group minerals as sensitive indicators of changing fluid composition during pegmatite formation: evidence from the Keivy alkaline province, Kola peninsula, NW Russia

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Keivy alkaline province, Kola Peninsula, NW Russia, consists of vast alkali granite massifs and several dike-like nepheline syenite bodies. It contains numerous rare-metal occurrences, formed by a complex sequence of magmatic, late-magmatic and post-magmatic (including pegmatitic) processes. The Sakharjok nepheline syenite pegmatite contains a remarkably diverse number of britholite group minerals, pointing to different physico-chemical conditions in the fluid. REE and actinides distribution in the host rock indicates that the late-magmatic (and pegmatitic) fluids were alkaline, with significant amounts of F and CO2. From REE and F variations of the britholite group minerals possible fluid compositions at different stages are suggested. The earliest fluorbritholite-(Ce) formed locally from a late magmatic, high temperature F-rich fluid. Fluorbritholite-(Y) presumably crystallized from a F-bearing and CO2-rich fluid; marked F saturation resulted in precipitation of abundant fluorite due to a temperature drop. Variations in REE and F contents in the most abundant fluorcalciobritholite indicate a successive decrease of F in the fluid during its evolution. The relationship between intergrown fluorapatite and fluorcalciobritholite and the presence of zones with a REE-rich fluorapatite between them indicate a continuous to sudden crystallization in this mineral sequence. The сrystallization of the latest “calciobritholite” is related to the input into the fluid of CO2 and/or H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agangi A, Kamenetsky VS, McPhie J (2010) The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas: insights from the Gawler range volcanics, South Australia. Chem Geol 273:314–325

    Article  Google Scholar 

  • Ahijado A, Casillas R, Nagy G, Fernandez C (2005) Sr-rich minerals in a carbonatite skarn, Fuerteventura, Canary Islands (Spain). Mineral Petrol 84:107–127

    Article  Google Scholar 

  • Arden KM, Halden NM (1999) Crystallization and alteration history of britholite in rare-earth-element-enriched pegmatitic segregations associated with the Eden Lake complex, Manitoba, Canada. Can Mineral 37(5):1239–1253

    Google Scholar 

  • Batieva ID, Bel’kov IV (1984) Sakharjok alkaline massif, constituent rocks, and minerals. Kola Branch, USSR Academy of Sciences, Apatity 133 pp. (in Russian)

    Google Scholar 

  • Charoy BL, Raimbault L (1994) Zr-, Th-, and REE-rich biotite differentiates in the A-type granite pluton of Suzhou (eastern China): the key role of fluorine. J Petrol 35(4):919–962

    Article  Google Scholar 

  • Della Ventura G, Williams CT, Cabella R, Oberti R, Caprilli F, Bellatreccia F (1999) Britholite-hellandite intergrowths and associated REE-minerals from the alkali-syenitic ejecta of the Vico volcanic complex (Latium, Italy): petrological application bearing on the REE mobility in volcanic systems. Eur J Mineral 11:843–854

    Article  Google Scholar 

  • Doroshkevich AG, Viladkar AG, Ripp GS, Burtseva MV (2009) Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India. Can Mineral 47:1105–1116

    Article  Google Scholar 

  • Ekambaram V, Brookins DG, Rosenberg PH, Emanuel KM (1986) Rare-earth element geochemistry of fluorite-carbonate deposits in western Montana, USA. Chem Geol 54:319–331

    Article  Google Scholar 

  • Gramaccioli CM, Diella V, Demartin F (1999) The role of fluoride complexes in REE geochemistry and the importance of 4f electrons: some examples in minerals. Eur J Mineral 11:983–992

    Article  Google Scholar 

  • Griffin WL, Nilssen B, Jensen BB (1979) Britholite-(Y) and its alteration: Reiarsdal, Vest-Agder, South Norway. Norsk Geol Tidsskr 58:265–271

    Google Scholar 

  • Gu J, Chao IY, Tang S (1994) A new mineral – fluorbritholite-(Ce). J Wuhan Univ Technol 9(3):9–14

    Google Scholar 

  • Keppler H (1993) Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contr Mineral Petrol 114:479–488

    Article  Google Scholar 

  • Keppler H, Wyllie PJ (1990) Role of fluids in transport and fractionation of uranium and thorium in magmatic processes. Nature 348:531–533

    Article  Google Scholar 

  • Kolyago EK, Lapin AV (1990) Britholite from metasomatites of the Kii alkali massif, Yenisei range. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 119(1):107–110 (in Russian)

    Google Scholar 

  • Kosterin AV (1959) On possible forms of transfer of rare-earth elements by hydrothermal solutions. Geokhimiya 4:310–315 (in Russian)

    Google Scholar 

  • Kravchenko-Berezhnoy RA, Medvedeva EM, Pakhomovsky YA, Polezhaeva LI, Rezhenova SA (1976) Combined usage of microprobe MS-46 and computer “Nairi-2”. In: Kravchenko-Berezhnoy RA (ed) Instrumental methods of mineral studies and usage of electronic computing devices. Kola Branch USSR Academy of Sciences, Apatity, pp 46–69 (in Russian)

    Google Scholar 

  • Liferovich RP, Mitchell RH, Zozulya DR, Shpachenko AK (2006) Paragenesis and composition of banalsite, stronalsite and their solid solution in nepheline syenite and ultramafic alkaline rocks. Can Mineral 44:929–942

    Article  Google Scholar 

  • Linnen RL, Samson IM, Williams-Jones AE, Chakhmouradian AR (2014) Geochemistry of the Rare-Earth Element, Nb, Ta, Hf, and Zr Deposits. In: Treatise on Geochemistry, 2nd edn, p 543–568

  • Lira R, Ripley EM (1992) Hydrothermal alteration and REE-Th mineralization at the Rodeo de Los Molles deposit, Las Chacras batholith, Central Argentina. Contr Mineral Petrol 110:370–386

  • London D, Hervig RL, Morgan GB (1988) Melt-vapor solubilities and elemental partitioning in peraluminous granite–pegmatite systems: experimental results with Macusani glass at 200 Mpa. Contr Mineral Petrol 99:360–373

    Article  Google Scholar 

  • Lyalina LM, Savchenko YE, Selivanova EA, Zozulya DR (2010a) Behoite and mimetite from the Sakharjok alkaline pluton, Kola peninsula. Geol Ore Deposit+ 52(7):641–645

  • Lyalina LM, Zozulya DR, Savchenko EE (2010b) Multiple crystallization of zircon in the Sakharjok rare-earth element–zirconium deposit, Kola peninsula. Dokl Earth Sci 430(1):120–124

  • Lyalina LM, Zozulya DR, Savchenko YE, Tarasov MP, Selivanova EA, Tarasova E (2014) Fluorbritholite-(Y) and yttrialite-(Y) from silexites of the Keivy alkali granites, Kola Peninsula. Geol Ore Deposit + 56:589–602

  • Lyalina L, Zolotarev A Jr, Selivanova E, Ye S, Zozulya D, Krivovichev S, Yu M (2015) Structural characterization and composition of Y-rich hainite from Sakharjok nepheline syenite pegmatite (Kola peninsula, Russia). Mineral Petrol 109(4):443–451

  • Lyalina L, Zolotarev A Jr, Selivanova E, Ye S, Krivovichev S, Yu M, Kadyrova G, Zozulya D (2016) Batievaite-(Y), Y2Ca2Ti[Si2O7]2(OH)2(H2O)4, a new mineral from nepheline syenite pegmatite in the Sakharjok massif, Kola peninsula. Russia Mineral Petrol. doi:10.1007/s00710-016-0444-4

  • Macdonald R, Bagiński B, Dzierżanowski P, Jokubauskas P (2013) Apatite-supergroup minerals in UK Palaeogene granites: composition and relationship to host-rock composition. Eur J Mineral 25:461–471

    Article  Google Scholar 

  • Mariano AN (1989) Economic geology of rare earth minerals. Rev Mineral 21:309–337

    Google Scholar 

  • McLennan SM, Taylor SR (1979) Rare earth element mobility associated with uranium mineralization. Nature 282:247–250

    Article  Google Scholar 

  • Mel’nikov VS, Grechanovskyaya EE (2010) Pseudomorphic substitution of britholite of the Azov zirconium–rare-earth deposit: role of metamict transformations and metasomatism. Mineralogicheskiy Zhurnal 32(3):11–21 (in Russian)

    Google Scholar 

  • Mel’nikov VS, Vozhnyak DK, Grechanovskyaya EE, Gurskii DS, Kulchitskaya AA, Strekozov SN (2000) Azov zirconium–rare-earth deposit: mineralogical and genetic features. Mineralogicheskiy Zhurnal 22(1):42–61 (in Russian)

    Google Scholar 

  • Melluso L, Morra V, De Gennaro R (2011) Coexisting Ba-feldspar and melilite in a melafoidite lava at Mt. Vulture, Italy: role of volatiles and alkaline earths in bridging a petrological incompatibility. Can Mineral 49:983–1000

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones AE, Wagne T (2009) An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride- and chloride- bearing aqueous solutions at temperatures up to 300 C. Geochim Cosmochim Acta 73:7087–7109

    Article  Google Scholar 

  • Mineev DA (1963) Geochemical differentiation of rare-earth elements. Geokhimiya 12:1082–1100 (in Russian)

    Google Scholar 

  • Mineev DA (1968) Geochemistry of apogranites and rare-metal metasomatites of northwestern Tarbagatai. Nauka, Moscow 185 pp. (in Russian)

    Google Scholar 

  • Mitrofanov FP, Zozulya DR, Bayanova TB, Levkovich NV (2000) The World’s oldest anorogenic alkali granitic magmatism in the Keivy structure on the Baltic shield. Dokl Earth Sci 374:1145–1148

    Google Scholar 

  • Orlandi P, Perchiazzi N, Mannucci G (1989) First occurrence of britholite-(Ce) in Italy (Monte Somma, Vesuvius). Eur J Mineral 1:723–725

    Article  Google Scholar 

  • Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White TJ (2010) Nomenclature of the apatite supergroup minerals. Eur J Mineral 22:163–179

    Article  Google Scholar 

  • Pekov IV, Pasero M, Yaskovskaya AN, Chukanov NV, Pushcharovsky DY, Merlino S, Zubkova NV, Kononkova NN, Men'shikov YP, Zadov AE (2007) Fluorcalciobritholite, (Ca,REE)5[(Si,P)O4]3F, a new mineral: description and crystal chemistry. Eur J Mineral 19(1):95–103

    Article  Google Scholar 

  • Pekov IV, Zubkova NV, Chukanov NV, Husdal TA, Zadov AE, Pushcharovsky DY (2011) Fluorbritholite-(Y), (Y,Ca,Ln)5[(Si,P)O4]3F, a new mineral of the britholite group. N Jb Miner Abh 188(2):191–197

    Article  Google Scholar 

  • Petrella L, Williams-Jones AE, Goutier J, Walsh J (2014) The nature and origin of the rare earth element mineralization in the Misery syenitic intrusion, northern Quebec, Canada. Econ Geol 109:1643–1666

  • Ripp GS, Karmanov NS, Kanakin SV, Doroshkevich AG, Andreev GV (2005) Cerium britholite of the Mushugui deposit, Mongolia. Zapiski Rossiyskogo Mineralogicheskogo Obshchestva 134(2):91–103 (in Russian)

    Google Scholar 

  • Rønsbo JG (1989) Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilı’maussaq intrusion, South Greenland, and the petrological implications. Am Mineral 74:896–901

    Google Scholar 

  • Salvi S, Williams-Jones AE (1996) The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochim Cosmochim Acta 60:1917–1932

  • Smith MP, Henderson P, Campbell LS (2000) Fractionation of the REE during hydrothermal processes: constraints from the Bayan obo Fe-REE-Nb deposit, Inner Mongolia, China. Geochim Cosmochim Acta 64(18):3141–3160

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc, London, Spec Publ 42:313–345

  • Taylor RP, Strong DF, Fryer BJ (1981) Volatile control of contrasting trace element distributions in peralkaline granitic and volcanic rocks. Contr Mineral Petrol 77:267–271

    Article  Google Scholar 

  • Torró L, Villanova C, Castillo M, Campeny M, Gonçalves AO, Melgarejo JC (2012) Niobium and rare earth minerals from the Virulundo carbonatite, Namibe, Angola. Mineral Mag 76(2):393–409

    Article  Google Scholar 

  • Trueman DL, Pedersen JC, De St Jorre L, Smith DGW (1988) The Thor lake rare-metal deposits, Northwest territories. In: Taylor RP, Strong DF (eds) Recent advances in the geology of granite-related mineral deposits (Eds) Spec, vol 39, pp 280–290

  • Uher P, Ondrejka M, Bačík P, Broska I, Konečný P (2015) Britholite, monazite, REE carbonates, and calcite: products of hydrothermal alteration of allanite and apatite in A-type granite from Stupné, western Carpathians, Slovakia. Lithos 236-237:212–225

    Article  Google Scholar 

  • Vilalva FCJ, Vlach SRF, Simonetti A (2013) Nacareniobsite-(Ce) and britholite-(Ce) in peralkaline granites from the Morro Redondo complex, Graciosa Province, southern Brazil: occurrence and compositional data. Can Mineral 51:313–332

    Article  Google Scholar 

  • Williams-Jones AE, Samson IM, Olivo GR (2000) The genesis of hydrothermal fluorite-REE deposits in the Gallinas Mountains, New Mexico. Econ Geol 95:327–342

    Article  Google Scholar 

  • Wu C, Yuan Z, Bai G (1996) Rare earth deposits in China. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals - chemistry, origin and ore deposits. The Mineralogical Society Series 7:281–310

  • Zozulya D, Eby GN (2010) Rare-metal ore occurrences, related to the Late Archean A-type granites from the Keivy zone (NE Fennoscandian shield). In: Ramo OT, Lukkari SR, Heinonen AP (eds) International conference on a-type granites and related rocks through time (IGCP-510). Helsinki, Finland, August 18–20. Abstract Volume, pp. 113–115

  • Zozulya DR, Bayanova TB, Eby GN (2005) Geology and age of the late Archean Keivy alkaline province, northeastern Baltic shield. J Geol 113(5):601–608

    Article  Google Scholar 

  • Zozulya DR, Lyalina LM, Eby N, Savchenko EE (2012) Ore geochemistry, zircon mineralogy, and genesis of the Sakharjok Y-Zr deposit, Kola peninsula, Russia. Geol Ore Deposit+ 54(2):81–98

  • Zozulya DR, Lyalina LM, Savchenko YE (2015) Britholite ores of the Sakharjok Zr–Y–REE deposit, Kola peninsula: geochemistry, mineralogy, and formation stages. Geoch Int+ 53(10):892–902

Download references

Acknowledgements

We thank Silvio Vlach, an anonymous referee and Ray Macdonald (Guest Editor) for very helpful reviews. The study was supported by Russian Foundation for Basic Research (grant no. 16-05-00427) and Russian government grant 0231-2015-0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry R. Zozulya.

Additional information

Editorial handling: R. Macdonald

Electronic supplementary material

ESM 1

(PDF 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zozulya, D.R., Lyalina, L.M. & Savchenko, Y.E. Britholite-group minerals as sensitive indicators of changing fluid composition during pegmatite formation: evidence from the Keivy alkaline province, Kola peninsula, NW Russia. Miner Petrol 111, 511–522 (2017). https://doi.org/10.1007/s00710-017-0493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-017-0493-3

Keywords

Navigation