Skip to main content
Log in

Britholite ores of the Sakharjok Zr–Y–REE deposit, Kola Peninsula: Geochemistry, mineralogy, and formation stages

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Britholite ores in the complex Sakharjok Zr–Y–REE deposit (Kola Peninsula) form linear bodies in nepheline syenite and contain britholite-group minerals and zircon as main ore minerals. Geochemical data indicate that the formation of the britholite ores of the Sakharjok Massif was mainly controlled by magmatic differentiation and lateto post-magmatic reworking of the rocks by alkaline and F, CO2-bearing fluids. The elevated content of ore components in magma is caused by its derivation from enriched mantle source. It was established that crystallization of britholite occurred at the late and post-magmatic stages of the massif formation and was assisted by fluids with different physicochemical properties. The widest spread fluorbritholite-(Ce) typical of the trachytoid nepheline syenite crystallized mainly during albitization from highly alkaline, F-rich and CO2-bearing fluids/solutions. Britholite-(Ce) and fluorbritholite-(Y) found in the most recrystallized porphyritic nepheline syenite were formed at the later hydrothermal stage from F-bearing water-rich (metamorphic?) solutions. Fluorcalciobritholite crystallized from high-temperature pegmatite melt/solution at high CO2 activity. Postcrystallization alterations of the britholite-group minerals from the Sakharjok deposit resulted in the formation of altered zones within crystals and rims around them. The composition of overgrowth rims indicates the removal of F, Ce, and La from britholite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K. M. Arden and N. M. Halden, “Crystallization and alteration history of britholite in rare-earth-elementenriched pegmatitic segregations associated with the Eden Lake complex, Manitoba, Canada,” Can. Mineral. 37 (5), 1239–1253 (1999).

    Google Scholar 

  • I. D. Batieva and I. V. Bel’kov, Sakharjok Alkaline Massif, Constituent Rocks, and Minerals Kol’sk. Fil. Akad. Nauk SSSR, Apatite, 1984) [in Russian].

    Google Scholar 

  • T. B. Bayanova, Age of Reference Geological Complexes of the Kola Region and Duration of Magmatic Processes (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  • B. L. Charoy and L. Raimbault, “Zr-, Th-, and REE-rich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China): the key role of fluorine,” J. Petrol. 35 (4), 919–962 (1994).

    Article  Google Scholar 

  • G. Della Ventura, C. T. Williams, R. Cabella, R. Oberti, F. Caprilli, and F. Bellatreccia, “Britholite–hellandite intergrowths and associated REE-minerals from the alkali-syenitic ejecta of the Vico volcanic complex (Latium, Italy): petrological application bearing on the REE mobility in volcanic systems,” Eur. J. Mineral. 11, 843–854 (1999).

    Article  Google Scholar 

  • N. A. Eliseev, V. G. Kushev, and D. P. Vinogradov, Proterozoic Intrusive Complex of the Eastern Azov Region (Nauka, Moscow–Leningrad, 1965) [in Russian].

    Google Scholar 

  • W. L. Griffin, B. Nilssen, and B. B. Jensen, “Britholite (-Y) and its alteration: Reiarsdal, Vest-Agder, south Norway,” Norsk Geologisk Tidsskrift 58, 265–271 (1979).

    Google Scholar 

  • J. Gu, I. Y. Chao, and S. Tang, “A new mineral—fluorbritholite-(Ce),” J. Wuhan Univ. Technol. 9 (3), 9–14 (1994).

    Google Scholar 

  • H. Keppler and P. J. Wyllie, “Role of fluids in transport and fractionation of uranium and thorium in magmatic processes,” Nature 348, 531–533 (1990).

    Article  Google Scholar 

  • E. K. Kolyago and A. V. Lapin, “Britholite from metasomatites of the Kii alkali massif, Yenisei Range,” Zap. Vsesoyuz. Mineral. O-va, 119 (1), 107–110 (1990).

    Google Scholar 

  • A. V. Kosterin, “On possible forms of transfer of rare-earth element by hydrothermal solutions,” Geokhimiya, No. 4, 310–315 (1959).

    Google Scholar 

  • R. Lira and E. M. Ripley, “Hydrothermal alteration and REE-Th mineralization at the Rodeo de Los Molles deposit, Las Chacras batholith, central Argentina,” Contrib. Mineral. Petrol. 110, 370–386 (1992).

    Article  Google Scholar 

  • T. S. Livshits, “Britholites as natural analogues of actinide matrices: resistance to radiation damage,” Geol. Ore Dep. 48 (5), 357–368 (2006).

    Article  Google Scholar 

  • L. M. Lyalina, Ye. E. Savchenko, E. A. Selivanova, and D. R. Zozulya, “Behoite and mimetesite of the Sakharjok alkaline massif (Kola Peninsula),” Zap. Ross. Mineral. O-va 138 (3), 120–128 (2009).

    Google Scholar 

  • L. M. Lyalina, D. R. Zozulya, and Ye. E. Savchenko, “Multiple crystallization of zircon in the Sakharjok rareearth element–zirconium Deposit, Kola Peninsula,” Dokl. Earth Sci, 430 (1), 120–124 (2010).

    Article  Google Scholar 

  • A. N. Mariano, “Economic geology of rare earth minerals,” Rev. Mineral. 21, 309–337 (1989).

    Google Scholar 

  • V. S. Mel’nikov and E. E. Grechanovskyaya, “Pseudomorphic substitution of britholite of the Azov zirconium–rare-earth deposit: role of metamict transformations and metasomatism,” Mineral. Zh. 32 (3), 11–21 (2010).

    Google Scholar 

  • V. S. Mel’nikov, D. K. Vozhyak, E. E. Grechanovskyaya, D. S. Gurskii, A. A. Kul’shitskaya, and S. N. Strekozov, “Azov zirconium–rare-earth deposit: mineralogical and genetic features,” Mineral. Zh. 22 (1), 42–61 (2000).

    Google Scholar 

  • D. A. Mineev, Geochemistry of Apogranites and Rare-Metal Metasomatites of Northwestern Tarbagatai (Nauka, Moscow, 1968).

    Google Scholar 

  • D. A. Mineev, “Geochemical differentiation of rare-earth elements,” Geokhimiya, No. 12, 1082–1100 (1963).

    Google Scholar 

  • F. P. Mitrofanov, D. R. Zozulya, T. B. Bayanova, and N. V. Levkovich, “The world’s oldest anorogenic alkali granitic magmatism in the Keivy Structure on the Baltic Shield,” Dokl. Earth Sci. 374 (2), 238–241 (2000).

    Google Scholar 

  • W. P. Nash, “Apatite chemistry and phosphorus fugacity in a differentiated igneous intrusion,” Am. Mineral. 57, 877–886 (1972).

    Google Scholar 

  • D. C. Noe, J. M. Hughes, A. N. Mariano, J. W. Drexler, and A. Kato, “The crystal structure of monoclinic britholite-(Ce) and britholite-(Y),” Zeits. Kristall. 206, 233–246 (1993).

    Article  Google Scholar 

  • R. Oberti, L. Ottolini, G. D. Ventura, and G. C. Parodi, “On the symmetry and crystal chemistry of britholite: new structural and microanalytical data,” Am. Mineral. 86, 1066–1075 (2001).

    Google Scholar 

  • P. Orlandi, N. Perchiazzi, and G. Mannucci, “First occurrence of britholite-(Ce) in Italy (Monte Somma, Vesuvius),” Eur. J. Mineral. 1, 723–725 (1989).

    Article  Google Scholar 

  • M. Pasero, A. R. Kampf, C. Ferraris, I. V. Pekov, J. Rakovan, and T. J. White “Nomenclature of the apatite supergroup minerals,” Eur. J. Mineral. 22, 163–179 (2010).

    Article  Google Scholar 

  • I. V. Pekov, M. Pasero, A. N. Yaskovskaya, N. V. Chukanov, D. Yu. Pushcharovsky, S. Merlino, N. V. Zubkova, N. N. Kononkova, Yu. P. Men’shikov, and A. E. Zadov, “Fluorcalciobritholite, (Ca,REE)5[(Si,P)O4]3F, a new mineral: description and crystal chemistry,” Eur. J. Mineral. 19 (1), 95–103 (2007).

    Article  Google Scholar 

  • I. V. Pekov, N. V. Zubkova, N. V. Chukanov, T. A. Husdal, A. E. Zadov, and D. Yu. Pushcharovsky, “Fluorbritholite(Y), (Y,Ca,Ln)5[(Si,P)O4]3F, a new mineral of the britholite group,” N. Jb. Miner. Abh. 188 (2), 191–197 (2011).

    Article  Google Scholar 

  • Yu. D. Pushkarev, E. V. Kravchenko, and G. I. Shestakov, Precambrian Geochronological Markers of the Kola Peninsula (Nauka, Leningrad, 1978) [in Russian].

    Google Scholar 

  • G. S. Ripp, N. S. Karmanov, S. V. Kanakin, A. G. Doroshkevich, and G. V. Andreev, “Cerium britholite of the Mushugui deposit, Mongolia,” Zap. Ross. Mineral. Ova 134 (2), 91–103 (2005).

    Google Scholar 

  • M. P. Smith, P. Henderson, and L. S. Campbell, “Fractionation of the REE during hydrothermal processes: constraints from the Bayan Obo Fe–REE–Nb deposit, Inner Mongolia, China,” Geochim. Cosmochim. Acta 64 (18), 3141–3160 (2000).

    Article  Google Scholar 

  • R. P. Taylor, D. F. Strong, and B. J. Fryer, “Volatile control of contrasting trace element distributions in peralkaline granitic and volcanic rocks,” Contrib. Mineral. Petrol. 77, 267–271 (1981).

    Article  Google Scholar 

  • D. L. Trueman, J. C. Pedersen, L. De St. Jorre, and D. G. W. Smith, “The Thor Lake rare-metal deposits, Northwest Territories,” in Recent Advances in the Geology of Granite-Related Mineral Deposits, Ed. by R. P. Taylor and D. F. Strong, Spec. V. 39, 280–290 (1988).

    Google Scholar 

  • P. Uher and M. Ondrejka, “Britholite-(Y): a late-magmatic, Y-REE-bearing accessory mineral from A-type granite in Stupne near Povazska Bystrica, Pieniny Klippen Belt, north-western Slovakia,” Bull. Mineral.Petrol. Odd. Nar. Muz. (Praha) 16 (2), 224–229 (2008).

    Google Scholar 

  • E. Veilly, E. du Fou de Kerdaniel, J. Roques, N. Dacheux, and N. Clavier, “Comparative behavior of britholites and monazite/brabantite solid solutions during leaching tests: a combined experimental and DFT approach,” Inorg. Chem. 47, 10971–10979 (2008).

    Article  Google Scholar 

  • A. N. Vinogradov, I. D. Batieva, D. R. Zozulya, V. T. Kalinnikov, V. N. Lebedev, V. A. Masloboev, A. I. Rakaev, and Z. D. Gritsai, “Complex rare-earth–zirconium mineralization of the Sakharjok alkaline massif,” Mineral. Syr’e 7, 25–34 (2000).

    Google Scholar 

  • C. Winther, “Britholith, ein neues mineral,” Z. Kristallogr. Mineral. 34, 685–687 (1901).

    Google Scholar 

  • C. Wu, Z. Yuan, and G. Bai “Rare earth deposits in China,” in Rare Earth Minerals Chemistry, Origin and Ore Deposits, Ed. by. A. P. Jones, F. Wall, and C. T. Williams, Mineral. Soc. Ser. 7, 281–310 (1996).

    Google Scholar 

  • D. R. Zozulya, T. B. Bayanova, and G. N. Eby, “Geology and age of the Late Archean Keivy alkaline province, northeastern Baltic Shield,” J. Geol. 113 (5), 601–608 (2005).

    Article  Google Scholar 

  • D. R. Zozulya, T. B. Bayanova, and P. A. Serov, “Age and isotopic geochemical characteristics of Archean carbonatites and alkaline rocks of the Baltic Shield,” Dokl. Earth Sci. 415A (6), 874–879 (2007).

    Article  Google Scholar 

  • D. R. Zozulya, L. M. Lyalina, N. Eby, and Ye. E. Savchenko, “Ore geochemistry, zircon mineralogy, and genesis of the Sakharjok Y–Zr deposit, Kola Peninsula, Russia,” Geol. Ore Dep. 54 (2), 81–98 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Zozulya.

Additional information

Original Russian Text © D.R. Zozulya, L.M. Lyalina, Ye.E. Savchenko, 2015, published in Geokhimiya, 2015, No. 10, pp. 913–924.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zozulya, D.R., Lyalina, L.M. & Savchenko, Y.E. Britholite ores of the Sakharjok Zr–Y–REE deposit, Kola Peninsula: Geochemistry, mineralogy, and formation stages. Geochem. Int. 53, 892–902 (2015). https://doi.org/10.1134/S0016702915080108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915080108

Keywords

Navigation