Skip to main content
Log in

Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas

  • Special Issue Accessory Minerals
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Zoning patterns, U-Th disequilibria ages, and elemental compositions of zircon from eruptions of Askja (1875 AD), Hekla (1158 AD), Öræfajökull (1362 AD) and Torfajökull (1477 AD, 871 AD, 3100 BP, 7500 BP) provide insights into the complex, extended, histories of silicic magmatic systems in Iceland. Zircon compositions, which are correlated with proximity to the main axial rift, are distinct from those of mid-ocean ridge environments and fall at the low-Hf edge of the range of continental zircon. Morphology, zoning patterns, compositions, and U-Th ages all indicate growth and storage in subvolcanic silicic mushes or recently solidified rock at temperatures above the solidus but lower than that of the erupting magma. The eruptive products were likely ascending magmas that entrained a zircon “cargo” that formed thousands to tens of thousands of years prior to the eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arnorsson S, Ivarsson G, Cuff KE, Saemundsson K (1987) Geothermal activity in the Torfajokull Field, south Iceland; summary of geochemical studies. Jökull 37:1–12

    Google Scholar 

  • Bacon CR, Lowenstern JB (2005) Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon. Earth Planet Sci Lett 233:277–293. doi:10.1016/j.epsl.2005.02.012

    Google Scholar 

  • Barth AP, Wooden JL (2010) Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chem Geol 277:149–159

    Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; Implications for the chemistry of crustal melts. J Petrol 37:521–552

    Google Scholar 

  • Bindeman I (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev Mineral Geochem 69:445–478. doi:10.2138/rmg.2008.69.12

    Google Scholar 

  • Bindeman IN, Valley JW, Wooden JL, Persing HM (2001) Post-caldera volcanism: in situ measurement of U-Pb age and oxygen isotope ratio in Pleistocene zircons from Yellowstone caldera. Earth Planet Sci Lett 189:197–206

    Google Scholar 

  • Bindeman IN, Fu B, Kita N, Valley JW (2008) Origin and evolution of Yellowstone silicic magmatism based on ion microprobe analysis of izotopically-zoned zircons. J Petrol 49:163–193

    Google Scholar 

  • Blake S (1984) Magma mixing and hybridization processes at the alkalic, silicic, Torfajoekull central volcano triggered by tholeiitic Veidivoetn fissuring, South Iceland. J Volcanol Geotherm Res 22:1–31

    Google Scholar 

  • Brown SJA, Fletcher IR (1999) SHRIMP U-Pb dating of the preeruption growth history of zircons from the 340 ka Whakamaru Ignimbrite, New Zealand: Evidence for >250 k.y. magma residence times. Geology 27:1035–1038. doi:10.1130/0091-7613(1999)027<1035:supdot>2.3.co;2

    Google Scholar 

  • Brown KL, Carter CA, Fohey NK, Wooden JL, Yi K, Barth AP (2004) A study of the origin of rhyolite at mid-ocean ridges; geochronology and petrology of trachydacite and rhyolite from Salton Sea, California, and Torfajokull, Iceland. Abstracts with Programs—Geol Soc Am 36: 79

  • Bryan SE, Ferrari L, Reiners PW, Allen CM, Petrone CM, Ramos-Rosique A, Campbell IH (2008) New insights into crustal contributions to large-volume rhyolite generation in the mid-Tertiary Sierra Madre Occidental province, Mexico, revealed by U-Pb geochronology. J Petrol 49:47–77

    Google Scholar 

  • Carmichael ISE (1964) The petrology of Thingmuli, a Tertiary volcano in eastern Iceland. J Petrol 5:435–460

    Google Scholar 

  • Carmichael ISE, Turner FJ, Verhoogen J (1974) Igneous petrology. McGraw-Hill Book Co., New York

    Google Scholar 

  • Charlier BLA, Peate DW, Wilson CJN, Lowenstern JB, Storey M, Brown SJA (2003) Crystallisation ages in coeval silicic magma bodies: 238U-230Th disequilibrium evidence from the Rotoiti and Earthquake Flat eruption deposits. Taupo Volcanic Zone, New Zealand. Earth Planet Sci Lett 206:441–457

    Google Scholar 

  • Charlier BLA, Wilson CJN, Lowenstern JB, Blake S, Van Calsteren PW, Davidson JP (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U-Th and U-Pb systematics in zircons. J Petrol 46:3–32. doi:10.1093/petrology/egh060

    Google Scholar 

  • Claiborne LL, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea F (2006) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineral Mag 70:517–543. doi:10.1180/0026461067050348

    Google Scholar 

  • Claiborne LL, Miller CF, Flanagan DM, Clynne MA, Wooden JL (2010a) Zircon reveals protracted magma storage and recycling beneath Mount St. Helens. Geology 38:1011–1014. doi:10.1130/g31285.1

    Google Scholar 

  • Claiborne LL, Miller CF, Wooden JL (2010b) Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith. Spirit Mountain, Nevada. Contrib Mineral Petrol 160:511–531. doi:10.1007/s00410-010-0491-5

    Google Scholar 

  • Colombini L, Miller CF, Gualda GAR, Wooden JL, Miller JS (2011) Sphene (titanite) and zircon in the Highland Range volcanic sequence (Miocene, Southern Nevada, USA): Elemental partitioning, phase relations, and influence on evolution of silicic magma. Mineral Petrol, this issue.

  • Condomines M, Morand P, Allegre CJ, Sigvaldason G (1981) Th-230-U-238 Disequilibria in Historical Lavas from Iceland. Earth Planet Sci Lett 55:393–406

    Google Scholar 

  • Crowley JL, Schoene B, Bowring SA (2007) U-Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35:1123–1126. doi:10.1130/G24017A.1

    Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437. doi:10.1007/s00410-007-0201-0

    Google Scholar 

  • Flanagan DM, Lowenstern JB, Carley TL, Miller CF, Wooden JL (2010) Zircon from the Alid volcanic center, Eritrea: implications for magmatic evolution. Abstracts with Programs—Geol Soc Am 42:668.

    Google Scholar 

  • Fohey-Breting NK, Barth AP, Wooden JL, Mazdab FK, Carter CA, Schermer ER (2010) Relationship of voluminous ignimbrites to continental arc plutons: petrology of Jurassic ignimbrites and contemporaneous plutons in southern California. J Volcano Geotherm Res 189:1–11

    Google Scholar 

  • Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA, Valley JW (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Mineral Petrol 156:197–215. doi:10.1007/s00410-008-0281-5

    Google Scholar 

  • Grimes CB, John BE, Kelermen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hanghoj K, Schwartz JJ (2007) Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35:643–646. doi:10.1130/G23603a.1

    Google Scholar 

  • Gronvold K, Larsen G, Einarsson P, Thorarinsson S, Saemundsson K (1983) The Hekla eruption 1980–1981. Bull Volcano 46:349–363

    Google Scholar 

  • Gunnarsson B, Marsh BD, Taylor HP (1998) Generation of Icelandic rhyolites: silicic lavas from the Torfajokull central volcano. J Volcano Geotherm Res 83:1–45

    Google Scholar 

  • Harrison TM, Watson EB, Aikman AB (2007) Temperature spectra of zircon crystallization in plutonic rocks. Geology 35:635–638. doi:10.1130/g23505a.1

    Google Scholar 

  • Hayden LA, Watson EB (2007) Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth Planet Sci Lett 258:561–568

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62. doi:10.2113/0530027

    Google Scholar 

  • Jonasson K (2007) Silicic volcanism in Iceland: composition and distribution within the active volcanic zones. J Geodyn 43:101–117. doi:10.1016/j.jog.2006.09.004

    Google Scholar 

  • Klemetti E, Cooper K (2007) Cryptic young zircon and young plagioclase in the Kaharoa Rhyolite, Tarawera, New Zealand: Implications for crystal recycling in magmatic systems. Eos, Trans, Am Geophys Un Abstract #V42C-05.

  • Lacasse C, Sigurdsson H, Carey SN, Johannesson H, Thomas LE, Rogers NW (2003) Bimodal volcanism at the Katla subglacial caldera. Iceland: insight into the geochemistry and petrogenesis of rhyolitic magmas. Bull Volcano 69:373–399

    Google Scholar 

  • Larsen G, Dugmore A, Newton A (1999) Geochemistry of historical-age silicic tephras in Iceland. Holocene 9:463–471

    Google Scholar 

  • Lowenstern JB, Clynne MA, Bullen TD (1997) Comagmatic A-type granophyre and rhyolite from the Alid volcanic center, Eritrea, northeast Africa. J Petrol 38:1707–1721

    Google Scholar 

  • Lowenstern JB, Persing HM, Wooden JL, Lanphere M, Donnelly-Nolan J, Grove TL (2000) U-Th dating of single zircons from young granitoid xenoliths: new tools for understanding volcanic processes. Earth Planet Sci Lett 183:291–302

    Google Scholar 

  • Lowenstern JB, Charlier BLA, Clynne MA, Wooden JL (2006) Extreme U-Th disequilibrium in rift-related basalts, rhyolites and granophyric granite and the timescale of rhyolite generation, intrusion and crystallization at Alid volcanic center, Eritrea. J Petrol 47:2105–2122. doi:10.1093/petrology/egl038

    Google Scholar 

  • Macdonald R, Sparks RSJ, Sigurdsson H, Mattey DP, Mcgarvie DW, Smith RL (1987) The 1875 eruption of Askja volcano, Iceland—combined fractional crystallization and selective contamination in the generation of rhyolitic magma. Mineral Mag 51:183–202

    Google Scholar 

  • Macdonald R, Mcgarvie DW, Pinkerton H, Smith RL, Palacz ZA (1990) Petrogenetic evolution of the Torfajokull Volcanic Complex, Iceland.1. Relationship between the magma types. J Petrol 31:429–459

    Google Scholar 

  • Martin E, Sigmarsson O (2007) Crustal thermal state and origin of silicic magma in Iceland: the case of Torfajokull, Ljosufjoll and Snaefellsjokull volcanoes. Contrib Mineral Petrol 153:593–605. doi:10.1007/s00410-006-0165-5

    Google Scholar 

  • Martin E, Sigmarsson O (2010) Thirteen million years of silicic magma production in Iceland: links between petrogenesis and tectonic settings. Lithos 116:129–144

    Google Scholar 

  • Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529–532. doi:10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2

    Google Scholar 

  • Miller JS, Matzel JEP, Miller CF, Burgess SD, Miller RB (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcano Geothermal Res 167:282–299

    Google Scholar 

  • Mork ME (1984) Magma mixing in the post-glacial veidivotn fissure eruption, southeast Iceland—a microprobe study of mineral and glass variations. Lithos 17:55–75

    Google Scholar 

  • Muehlenbachs K, Anderson AT Jr, Sigvaldason GE (1974) Low-O18 basalts from Iceland. Geochim Cosmochim Acta 38:577–588

    Google Scholar 

  • O’Hara MJ, Fry N, Prichard HM (2001) Minor phases as carriers of trace elements in non-modal crystal-liquid separation processes; II, Illustrations and bearing on behaviour of REE, U, Th and the PGE in igneous processes. J Petrol 42:1887–1910

    Google Scholar 

  • Oswald P, Geist D, Harpp K, Christensen B, Wallace P, Anonymous (2007) Differentiation of historical Hekla magmas. Eos, Trans, Am Geophys Un Abstract #V13C-1493.

  • Pamukcu A (2010) The evolution of the Peach Spring Tuff magmatic system as revealed by accessory mineral textures and compositions, MSc thesis: Vanderbilt University, Nashville, TN.

  • Prestvik T, Goldberg S, Karlsson H, Gronvold K (2001) Anomalous strontium and lead isotope signatures in the off-rift Oraefajokull central volcano in south-east Iceland. Evidence for enriched endmember(s) of the Iceland mantle plume? Earth Planet Sci Lett 190:211–220

    Google Scholar 

  • Pupin J (2000) Granite genesis related to geodynamics from Hf-Y in Zircon. Trans Royal Soc Edinb Earth Sci 91:245–256

    Google Scholar 

  • Reid MR, Coath CD, Harrison TM, McKeegan KD (1997) Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera; 230Th - 238U ion microprobe dating of young zircons. Earth Planet Sci Lett 150:27–39

    Google Scholar 

  • Rose-Koga EF, Sigmarsson O (2008) B-O-Th isotope systematics in Icelandic tephra. Chem Geol 255:454–462

    Google Scholar 

  • Saemundsson K (1979) Outline of the geology of Iceland. Jökull 29:7–28

    Google Scholar 

  • Sawka WN, Chappell BW (1988) Fractionation of uranium, thorium and rare-earth elements in a vertically zoned granodiorite—implications for heat-production distributions in the Sierra-Nevada Batholith, California, USA. Geochimica Et Cosmochimica Acta 52(5):1131–1143

    Google Scholar 

  • Schmitt AK, Stockli DF, Lindsay JM, Robertson R, Lovera OM, Kislitsyn R (2010) Episodic growth and homogenization of plutonic roots in arc volcanoes from combined U–Th and (U–Th)/He zircon dating. Earth Planet Sci Lett 295:91–103. doi:10.1016/j.epsl.2010.03.028

    Google Scholar 

  • Selbekk RS, Tronnes RG (2007) The 1362 AD Oraefajoull eruption, Iceland: petrology and geochemistry of large-volume homogeneous rhyolite. J Volcano Geothermal Res 160:42–58. doi:10.1016/j.jvolgeores.2006.08.005

    Google Scholar 

  • Sharma K, Self S, Blake S, Thordarson T, Larsen G (2008) The AD 1362 Oraefajokull eruption, S.E. Iceland; physical volcanology and volatile release. J Volcano Geothermal Res 178:719–739

    Google Scholar 

  • Sigurdsson H, Sparks RSJ (1981) Petrology of rhyolitic and mixed magma Ejecta from the 1875 eruption of Askja, Iceland. J Petrol 22:41–84

    Google Scholar 

  • Sigvaldason GE (2002) Volcanic and tectonic processes coinciding with glaciation and crustal rebound: an early Holocene rhyolitic eruption in the Dyngjufjoll volcanic centre and the formation of the Askja caldera, north Iceland. Bull Volcano 64:192–205. doi:10.1007/s00445-002-0204-7

    Google Scholar 

  • Simon JI, Renne PR, Mundil R (2008) Implications of pre-eruptive magmatic histories of zircons for U-Pb geochronology of silicic extrusions. Earth Planet Sci Lett 266:182–194

    Google Scholar 

  • Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of the 1875 eruption of Askja, Iceland. Phil Trans Royal Soc London Series A-Math Phys Eng Sci 299:241–273

    Google Scholar 

  • Stelten M, Cooper KM (2010) Constraints on the nature of the subvolcanic system at South Sister Volcano, Oregon from 238U-230Th zircon ages and 238U-230Th-226Ra plagioclase ages. Abstracts with Programs - Geological Society of America 42: 668.

  • Sverrisdottir G (2007) Hybrid magma generation preceding Plinian silicic eruptions at Hekla, Iceland: evidence from mineralogy and chemistry of two zoned deposits. Geol Mag 144:643–659. doi:10.1017/S0016756807003470

    Google Scholar 

  • Thorarinsson S (1958) The Oraefajokull eruption of 1362. Acta Naturalia Islandica 2,Natturugripasafn Islands Museum Rerum Naturalium Islandiae, Reykjavik.

  • Thordarson T, Hoskuldsson A (2002) Iceland. Classic Geology in Europe 3, Terra Publishing, Harpenden, England.

  • Thordarson T, Larsen G (2007) Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history. J Geodyn 43:118–152. doi:10.1016/j.jog.2006.09.005

    Google Scholar 

  • Vazquez JA, Reid MR (2002) Time scales of magma storage and differentiation of voluminous high-silica rhyolites at Yellowstone Caldera, Wyoming. Contrib Mineral Petrol 144:274–285

    Google Scholar 

  • Walker GPL (1966) Acid volcanic rocks in Iceland. Bull Volcano 29:375–402

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited—temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844. doi:10.1126/science.1110873

    Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433. doi:10.1007/s00410-006-0068-5

    Google Scholar 

  • Wood DA (1978) Major and trace element variations in the Tertiary lavas of eastern Iceland and their significance with respect to the Iceland geochemical anomaly. J Petrol 19:393–436

    Google Scholar 

  • Wood DA, Joron JL, Treuil M, Norry M, Tarney J (1979) Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor; the nature of mantle source inhomogeneities. Contrib Mineral Petrol 70:319–339

    Google Scholar 

  • Zellmer GF, Rubin KH, Gronvold K, Jurado-Chichay Z, Hernandez-Trevino T (2004) U-series whole-rock and mineral geochemistry of recent bimodal eruptive products from the Torfajokull/Veidivotn volcanic system, south-central Iceland. Eos, Trans, Am Geophys Un Abstract #V53A-0602.

  • Zellmer GF, Rubin KH, Gronvold K, Jurado-Chichay Z (2008) On the recent bimodal magmatic processes and their rates in the Torfajokull-Veidivotn area, Iceland. Earth Planet Sci Lett 269:387–397. doi:10.1016/j.epsl.2008.02.026

    Google Scholar 

Download references

Acknowledgments

We give special thanks to Kenneth Brown, Christina Carter and Nicole Fohey-Breting for their pioneering work with prehistoric Torfajökull zircon, made possible by the IUPUI Undergraduate Research Opportunity Program. We also thank Olgeir Sigmarsson, Gudrun Larsen, Karl Gronvold, Peter Oswald, Denny Geist, Karen Harpp, Ken Rubin, Georg Zellmer, and Sheila Seaman for invaluable advice concerning the meaning of silicic magmatism in Iceland and practicalities of investigating it in the field. Jorge Vasquez and Frank Mazdab provided assistance at the Stanford-USGS SHRIMP lab, and Abraham Padilla, Addy Petrilla, Lily Claiborne, and Danny Flanagan worked with us in the field and lab. This research was supported by a Geological Society of America Student Research Grant and National Science Foundation Grant NSF- NSF-EAR-0635922.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara L. Carley.

Additional information

Editorial handling: I. Broska and D. Harlov

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material

(DOC 2217 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carley, T.L., Miller, C.F., Wooden, J.L. et al. Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas. Miner Petrol 102, 135 (2011). https://doi.org/10.1007/s00710-011-0169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00710-011-0169-3

Keywords

Navigation