Skip to main content
Log in

Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The current study is aimed to study cytotoxicity and oxidative stress mediated changes induced by copper oxide nanoparticles (CuO NPs) in Chinook salmon cells (CHSE-214). To this end, a number of biochemical responses are evaluated in CHSE-214 cells which are as follows [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] MTT, neutral red uptake (NRU), lactate dehydrogenase (LDH), protein carbonyl (PC), lipid peroxidation (LPO), oxidised glutathione (GSSG), reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione sulfo-transferase (GST), superoxide dismutase (SOD), catalase (CAT), 8-Hydroxy-2′-deoxyguanosine (8-OHdG) and reactive oxygen species (ROS), respectively. The 50 % inhibition concentration (IC50) of CuO NPs to CHSE-214 cells after 24 h exposure was found to be 19.026 μg ml−1. Viability of cells was reduced by CuO NPs, and the decrease was dose dependent as revealed by the MTT and NRU assay. CHSE-214 cells exposed to CuO NPs induced morphological changes. Initially, cells started to detach from the surface (12 h), followed by polyhedric, fusiform appearance (19 h) and finally the cells started to shrink. Later, the cells started losing their cellular contents leading to their death only after 24 h. LDH, PC, LPO, GSH, GPx, GST, SOD, CAT, 8-OHdG and ROS responses were seen significantly increased with the increase in the concentration of CuO NPs when compared to their respective controls. However, significant decrease in GSSG was perceptible in CHSE-214 cells exposed to CuO NPs in a dose-dependent manner. Our data demonstrated that CuO NPs induced cytotoxicity in CHSE-214 cells through the mediation of oxidative stress. The current study provides a baseline for the CuO NPs-mediated cytotoxic assessment in CHSE-214 cells for the future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aebi H (1984) Catalase. Methods Enzymol 2:673–684

    Google Scholar 

  • Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA (2010) Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophy Res Comm 396:578–583

  • Ahamed M, Akhtar MJ, Siddiqui MA, Ahmad J, Musarrat J, Al-Khedhairy AA, AlSalhi MS, Alrokayan SA (2011) Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283:101–108

    Article  CAS  PubMed  Google Scholar 

  • Alarifi S, Ali D, Verma A, Alakhtani S, Ali BA (2013) Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int J Toxicol 32(4):296–307

    Article  PubMed  Google Scholar 

  • Al-Bairuty GA, Shaw BJ, Handy RD, Henry TB (2013) Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout Oncorhynchus mykiss. Aquat Toxicol 126:104–115

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Srikanth K, Mohmood I, Sayeed I, Trindade T, Duarte AC, Pereira E, Ahmad I (2014) Brain glutathione redox system significance for the control of silica-coated magnetite nanoparticles with or without mercury co-exposures mediated oxidative stress in European eel (Anguilla anguilla L.). Environ Sci Pollut Res 12:7746–7756

    Article  Google Scholar 

  • Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M (1991) Copper-iondependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem J 273:601–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berntsen P, Park CY, Rothen-Rutishauser B, Tsuda A, Sager TM, Molina RM, Donaghey TC, Alencar AM, Kasahara DI, Ericsson T, Millet EJ, Swenson J, Tschumperlin DJ, Butler JP, Brain JD, Fredberg JJ, Gehr P, Zhou EH (2010) Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells. J R Soc Interface 7:S331–S340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beutler E (1984) A manual of biochemical methods. Grune and Stratlon, Orlando, pp 74–76

    Google Scholar 

  • Borenfreund E, Puerner JA (1985) A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). J Tissue Cult Methods 9:7–9

    Article  Google Scholar 

  • Castano A, Vega M, Tarazona J (1995) Acute toxicity of selected metals and phenols on RTG-2 and CHSE-214 fish cell lines. Bull Environ Contam Toxicol 55:222–229

    Article  CAS  PubMed  Google Scholar 

  • Chang H, Jwo CS, Lo CH, Tsung TT, Kao MJ, Lin HM (2005) Rheology of CuO nanoparticle suspension prepared by ASNSS. Rev Adv Mater Sci 10:128–132

    CAS  Google Scholar 

  • Chen Z, Meng H, Yuan H, Xing G, Chen C, Zhao F, Wang Y, Zhang C, Zhao Y (2007) Identification of target organs of copper nanoparticles with ICPMS technique. J Radioanal Nucl Chem 272:599–603

    Article  CAS  Google Scholar 

  • Chio CP, Chen WY, Chou WC, Hsieh NH, Ling MP, Liao CM (2012) Assessing the potential risks to zebrafish posed by environmentally relevant copper and silver nanoparticles. Sci Total Environ 420:111–118

    Article  CAS  PubMed  Google Scholar 

  • Davoren M, Fogarty AM (2006) In vitro cytotoxicity assessment of the biocidal agents sodium phenylphenol, sodiumbenzyl-chlorophenol, and sodium-tertiary amylphenol using established fish cell lines. Toxicol in Vitro 20:1190–1201

    Article  CAS  PubMed  Google Scholar 

  • DeWitte-Orr S, Bols N (2005) Gliotoxin-induced cytotoxicity in three salmonid cell lines: Cell death by apoptosis and necrosis. Comp Biochem Physiol Part C: Toxicol Pharmacol 141:157–167

    CAS  Google Scholar 

  • Fahmy B, Cormier SA (2009) Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23:1365–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fairey ER, Edmunds J, Deamer-Melia NJ, Glasgow H Jr, Johnson FM, Moeller PR, Burkholder J, Ramsdell JS (1999) Reporter gene assay for fish-killing activity produced by Pfiesteria piscicida. Environ Health Perspect 107:711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farkas J, Christian P, Gallego-Urrea JA, Roos N, Hassellöv M, Tollefsen KE, Thomas KV (2011) Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquat Toxicol 101:117–125

    Article  CAS  PubMed  Google Scholar 

  • Farkas J, Christian P, Urrea JA, Roos N, Hassellöv M, Tollefsen KE, Thomas KV (2010) Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 96:44–52

    Article  CAS  PubMed  Google Scholar 

  • Farré M, Gajda-Schrantz K, Kantiani L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393(1):81–95

  • Gomes T, Pereira CG, Cardoso C, Pinheiro JP, Cancio I, Bebianno MJ (2012) Accumulation and toxicity of copper oxide nanoparticles in the digestive gland of Mytilus galloprovincialis. Aquat Toxicol 118–119:72–79

    Article  PubMed  Google Scholar 

  • Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ (2011) Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ Sci Technol 21:9356–9362

    Article  Google Scholar 

  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186

    Article  CAS  PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  • Hu W, Culloty S, Darmody G, Lynch S, Davenport J, Ramirez-Garcia S, Dawson KA, Lynch I, Blasco J, Sheehan D (2014) Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: a redox proteomic investigation. Chemosphere 108:288–299

    Article  Google Scholar 

  • Kamei Y, Aoki M (2007) A chlorophyll c2 analogue from the marine brown alga Eisenia bicyclis inactivates the infectious hematopoietic necrosis virus, a fish rhabdovirus. Arch Virol 152:861–869

    Article  CAS  PubMed  Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    Article  CAS  PubMed  Google Scholar 

  • Karlsson HL, Cronholm P, Hedberg Y, Tornberg M, De Battice L, Svedhem S, Wallinder IO (2013) Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process. Toxicology 313:59–69

    Article  CAS  PubMed  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during auto-oxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  CAS  PubMed  Google Scholar 

  • Levine RL (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  CAS  PubMed  Google Scholar 

  • Linder MC (2001) Copper and genomic stability in mammals. Mutat Res Fundam Mol Mech Mutagen 475:141–152

    Article  CAS  Google Scholar 

  • Marroquí L, Estepa A, Perez L (2008) Inhibitory effect of mycophenolic acid on the replication of infectious pancreatic necrosis virus and viral hemorrhagic septicemia virus. Antivir Res 80:332–338

    Article  PubMed  Google Scholar 

  • Midander K, Cronholm P, Karlsson HL, Elihn K, Möller L, Leygraf C, Wallinder IO (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper (II) oxide particles: a cross disciplinary study. Small 5:389–399

    Article  CAS  PubMed  Google Scholar 

  • Mori M, Wakabayashi M (2000) Cytotoxicity evaluation of chemicals using cultured fish cells. Water Sci Technol 42:277–282

    CAS  Google Scholar 

  • Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Ooi EL, Verjan N, Hirono I, Nochi T, Kondo H, Aoki T, Kiyono H, Yuki Y (2008) Biological characterisation of a recombinant Atlantic salmon type I interferon synthesized in Escherichia coli. Fish Shellfish Immunol 24:506–513

    Article  CAS  PubMed  Google Scholar 

  • Radu M, Munteanu MC, Petrache S, Serban AI, Dinu D, Hermenean A, Sima C, Dinischiotu A (2010) Depletion of intracellular glutathione and increased lipid peroxidation mediate cytotoxicity of hematite nanoparticles in MRC-5 cells. Acta Biochim Pol 57:355–360

    CAS  PubMed  Google Scholar 

  • Rosenkranz P, Fernández-Cruz ML, Conde E, Ramírez-Fernández MB, Flores JC, Fernández M, Navas JM (2012) Effects of cerium oxide nanoparticles to fish and mammalian cell lines: an assessment of cytotoxicity and methodology. Toxicol In Vitro 26:888–896

    Article  CAS  PubMed  Google Scholar 

  • Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180

    Article  CAS  PubMed  Google Scholar 

  • Semisch A, Ohle J, Witt B, Hartwig A (2014) Cytotoxicity and genotoxicity of nano – and microparticulate copper oxide: role of solubility and intracellular bioavailability. Part Fibre Toxicol 11:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw BJ, Al-Bairuty G, Handy RD (2012) Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout,(Oncorhynchus mykiss): physiology and accumulation. Aquat Toxicol 116:90–101

    Article  PubMed  Google Scholar 

  • Siddiqui MA, Alhadlaq HA, Ahmad J, Al-Khedhairy AA, Musarrat J, Ahamed M (2013) Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS ONE 8:e69534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skjelbred B, Horsberg TE, Tollefsen KE, Andersen T, Edvardsen B (2011) Toxicity of the ichthyotoxic marine flagellate Pseudochattonella (Dictyochophyceae, Heterokonta) assessed by six bioassays. Harmful Algae 10:144–154

    Article  CAS  Google Scholar 

  • Skocaj M, Filipic M, Petkovic J, Novak S (2011) Titanium dioxide in our everyday life; is it safe? Radiol Oncol 45:227–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srikanth K, Ahmad I, Rao JV, Trindade T, Duarte AC, Pereira E (2014) Modulation of glutathione and its dependent enzymes in gill cells of Anguilla anguilla exposed to silica coated iron oxide nanoparticles with or without mercury co-exposure under in vitro condition. Comp Biochem Physiol C Toxicol Pharmacol 162:7–14

    Article  CAS  PubMed  Google Scholar 

  • Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D (2010) Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat Toxicol 100:178–196

    Article  CAS  PubMed  Google Scholar 

  • Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Li N, Zhao J, White JC, Qu P, Xing B (2012) CuO nanoparticle interaction with human epithelial cells: Cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25:1512–1521

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescin assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Yoneda M, Morohashi A, Hori Y, Okamoto D, Sato A, Kurioka D, Nittami T, Hirokawa Y, Shiraishi T, Kawai K, Kasai H, Totsuka Y (2013) Effects of Fe3O4 magnetic nanoparticles on A549 Cells. Int J Mol Sci 14:15546–15560

    Article  PubMed  PubMed Central  Google Scholar 

  • Winterbourn C (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:1444–1452

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78

    Article  PubMed  Google Scholar 

  • Zhou K, Wang R, Xu B, Li Y (2006) Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology 17:3939–3943

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Department of Biotechnology (DBT), Government of India for financial assistance, and also thankful to the Director, IICT for providing the facilities and his constant encouragement. The author KS is thankful to CSIR (Govt. Of India) and also to Portuguese Foundation for Science and Technology (FCT) for the grant (SFRH/BPD/79490/2011).

Conflict of interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Koigoora Srikanth or Janapala Venkateswara Rao.

Additional information

Handling Editor: Reimer Stick

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srikanth, K., Pereira, E., Duarte, A.C. et al. Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles. Protoplasma 253, 873–884 (2016). https://doi.org/10.1007/s00709-015-0849-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0849-7

Keywords

Navigation