Skip to main content
Log in

Physiological performance, secondary metabolite and expression profiling of genes associated with drought tolerance in Withania somnifera

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Physiological, biochemical, and gene expression responses under drought stress were studied in Withania somnifera. Photosynthesis rate, stomatal conductance, transpiration rate, relative water content, chlorophyll content, and quantum yield of photosystems I and II (PSI and PSII) decreased in response to drought stress. Comparative expression of genes involved in osmoregulation, detoxification, signal transduction, metabolism, and transcription factor was analyzed through quantitative RT–PCR. The genes encoding 1-pyrroline-5-carboxylate synthetase (P5CS), glutathione S-transferase (GST), superoxide dismutase (SOD), serine threonine-protein kinase (STK), serine threonine protein phosphatase (PSP), aldehyde dehydrogenase (AD), leucoanthocyanidin dioxygenase/anthocyanin synthase (LD/AS), HSP, MYB, and WRKY have shown upregulation in response to drought stress condition in leaf tissues. Enhanced detoxification and osmoregulation along with increased withanolides production were also observed under drought stress. The results of this study will be helpful in developing stress-tolerant and high secondary metabolite yielding genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal PK, Shukla PS, Gupta K, Jha B (2013) Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 54(1):102–123

    Article  CAS  PubMed  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Alvarez S, Zhu M, Chen S (2009) Proteomics of Arabidopsis redox proteins in response to methyl jasmonate. J Proteomics 73(1):30–40

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Bhaskara GB, Nguyen TT, Verslues PE (2012) Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiol 160(1):379–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boyer JS, James RA, Munns R, Condon T, Passioura JB (2008) Osmotic adjustment leads to anomalously low estimates of relative water content in wheat and barley. Funct Plant Biol 35(11):1172–1182

    Article  Google Scholar 

  • Burke JJ, Hatfield JL, Klein RR, Mullet JE (1985) Accumulation of heat shock proteins in field-grown cotton. Plant Physiol 78(2):394–398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ceulemans H, Bollen M (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 84(1):1–39

    Article  CAS  PubMed  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. J Photochem Photobiol 70(1):1–9

    Article  CAS  Google Scholar 

  • Chaurasiya ND, Uniyal GC, Lal P, Misra L, Sangwan NS, Tuli R, Sangwan RS (2008) Analysis of withanolides in root and leaf of Withania somnifera by HPLC with photodiode array and evaporative light scattering detection. Phytochem Anal 19(2):148–154

    Article  PubMed  Google Scholar 

  • Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X (2010) Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10:281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158(1):340–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3(3):156–165

    Article  PubMed Central  PubMed  Google Scholar 

  • Dall'Osto L, Cazzaniga S, Havaux M, Bassi R (2010) Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of chlorophyll b and xanthophyll biosynthesis mutants. Mol Plant 3(3):576–593

    Article  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW 3rd (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172(1):11–21

    Article  CAS  PubMed  Google Scholar 

  • Denga G, Lianga J, Xua D, Longa H, Pana ZH, Yua M (2013) The relationship between proline content, the expression level of P5CS (Δ1-pyrroline-5-carboxylate synthetase), and drought tolerance in Tibetan hulless barley (Hordeum vulgare var. nudum). Russ J Plant Physl 60(5):693–700

    Article  Google Scholar 

  • Dinakar C, Djilianov D, Bartels D (2012) Photosynthesis in desiccation tolerant plants: energy metabolism and antioxidative stress defense. Plant Sci 182:29–41

    Article  CAS  PubMed  Google Scholar 

  • Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62(8):2599–2613

    Article  CAS  PubMed  Google Scholar 

  • Fan SL, Yuan ZH, Feng LJ, Wang XH, Ding XM, Zhen HL (2011) Effects of drought stress on physiological and biochemical parameters of Dahlia pinnata. Ying Yong Sheng Tai Xue Bao 22(3):651–657

    CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48(12):909–930

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Hogewoning SW, Wientjes E, Douwstra P, Trouwborst G, van Ieperen W, Croce R, Harbinson J (2012) Photosynthetic quantum yield dynamics: from photosystems to leaves. Plant Cell 24(5):1921–1935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang W, Ma X, Wang Q, Gao Y, Xue Y, Niu X, Yu G, Liu Y (2008) Significant improvement of stress tolerance in tobacco plants by overexpressing a stress-responsive aldehyde dehydrogenase gene from maize (Zea mays). Plant Mol Biol 68(4–5):451–463

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Doherty SJ, Croy RRD (2003) Biphasic superoxide generation in potato tubers. A self-amplifying response to stress. Plant Physiol 131(3):1440–1449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kannan ND, Kulandaivelu G (2011) Drought induced changes in physiological, biochemical and phytochemical properties of Withania somnifera Dun. J Med Plants Res 5(16):3929–3935

  • Kavi-Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88(3):424–438

  • Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D (2006) Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ 29(6):1033–1048

    Article  CAS  PubMed  Google Scholar 

  • Li J, Brader G, Kariola T, Palva ET (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46(3):477–491

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Liu Y, Rao J, Wang G, Li H, Ge F, Chen C (2013) Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants. Mol Biol (Mosk) 47(4):591–601

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using RealTime quantitative PCR and the 2−ΔΔ C T method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Mackova H, Hronkova M, Dobra J, Tureckova V, Novak O, Lubovska Z, Motyka V, Haisel D, Hajek T, Prasil IT, Gaudinova A, Storchova H, Ge E, Werner T, Schmulling T, Vankova R (2013) Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J Exp Bot 64(10):2805–2815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Makbul S, Guler NS, Durmus N, Guven S (2011) Changes in anatomical and physiological parameters of soybean under drought stress. Turk J Bot 35(4):369–377

    Google Scholar 

  • Marchese JA, Ferreira JFS, Rehder VLG, Rodrigues O (2010) Water deficit effect on the accumulation of biomass and artemisinin in annual wormwood (Artemisia annua L., Asteraceae). Braz J Plant Physiol 22(1):1–9

    Article  Google Scholar 

  • Martin DM, Gershenzon J, Bohlmann J (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol 132(3):1586–1599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller G, Miller R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  CAS  PubMed  Google Scholar 

  • Mu C, Zhang S, Yu G, Chen N, Li X, Liu H (2013) Overexpression of small heat shock protein LimHSP16.45 in Arabidopsis enhances tolerance to abiotic stresses. PLoS One 8(12):e82264

    Article  PubMed Central  PubMed  Google Scholar 

  • Murray JR, Hackett WP (1991) Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiol 97(1):343–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14(7):14950–14973

    Article  PubMed Central  PubMed  Google Scholar 

  • Pizzio GA, Rodriguez L, Antoni R, Gonzalez-Guzman M, Yunta C, Merilo E, Kollist H, Albert A, Rodriguez PL (2013) The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/protein phosphatase 2CA interaction for abscisic acid signaling and plant drought resistance. Plant Physiol 163(1):441–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):1–6

    Article  Google Scholar 

  • Pogson BJ, Rissler HM, Frank HA (2005) The roles of carotenoids in photosystem II of higher plants. In: Wydrzynski KS T (ed) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Springer, Dordrecht, pp 515–537

    Google Scholar 

  • Polivka T, Frank HA (2010) Molecular factors controlling photosynthetic light harvesting by carotenoids. Acc Chem Res 43(8):1125–1134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ranjan S, Singh R, Singh M, Pathre UV, Shirke PA (2014) Characterizing photoinhibition and photosynthesis in juvenile-red versus mature-green leaves of Jatropha curcas L. Plant Physiol Biochem 79:48–59

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130(3):1143–1151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchita, Dhawan SS, Sharma A (2014) Analysis of differentially expressed genes in abiotic stress response and their role in signal transduction pathways. Protplasma 251(1):81–91

    Article  CAS  Google Scholar 

  • Scartezzini P, Antognoni F, Conte L, Maxia A, Troia A, Poli F (2007) Genetic and phytochemical difference between some Indian and Italian plants of Withania somnifera (L.) Dunal. Nat Prod Res 21(10):923–932

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Saravanan R, Gajbhiye NA (2010) Phytochemical and physiological changes in Ashwagandha (Withania somnifera Dunal) under soil moisture stress. Braz J Plant Physiol 22(4):255–261

    Article  Google Scholar 

  • Sharma R, Sahoo A, Devendran R, Jain M (2014) Over-expression of a rice tau class glutathione s-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS One 9(3):e92900

    Article  PubMed Central  PubMed  Google Scholar 

  • Shin D, Moon SJ, Han S, Kim BG, Park SR, Lee SK, Yoon HJ, Lee HE, Kwon HB, Baek D, Yi BY, Byun MO (2011) Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiol 155(1):421–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol 141(2):367–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silva EC, Nogueira RJMC, Vale FHA, Melo NF, Araujo FP (2009) Water relations and organic solutes production in four umbu tree (Spondias tuberosa) genotypes under intermittent drought. Braz J Plant Physiol 21(1):43–53

    Article  Google Scholar 

  • Singh R, Naskar J, Pathre UV, Shirke PA (2014a) Reflectance and cyclic electron flow as an indicator of drought stress in cotton (Gossypium hirsutum). Photochem Photobiol 90(3):544–551

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Pandey N, Naskar J, Shirke PA (2014b) Physiological performance and differential expression profiling of genes associated with drought tolerance in contrasting varieties of two Gossypium species. Protoplasma. doi:10.1007/s00709-014-0686-0

    Google Scholar 

  • Srivastava P, Tiwari N, Yadav AK, Kumar V, Shanker K, Verma RK, Gupta MM, Gupta AK, Khanuja SPS (2008) Simultaneous quantification of withanolides in Withania somnifera by a validated high-performance thin-layer chromatographic method. J Aoac Int 91(5):1154–1161

    CAS  PubMed  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Tsang EWT, Bowler C, Herouart D, Vancamp W, Villarroel R, Genetello C, Vanmontagu M, Inze D (1991) Differential regulation of superoxide dismutases in plants exposed to environmental-stress. Plant Cell 3(8):783–792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7(5):491–498

    Article  PubMed  Google Scholar 

  • Verma SK, Kumar A (2011) Therapeutic uses of Withania somnifera (ashwagandha) with a note on withanolides and its pharmacological actions. Asian J Pharm Clin Res 4:1–4

    CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 9(3):e92913

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu C, Jing R, Mao X, Jia X, Chang X (2007) A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco. Ann Bot 99(3):439–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7(5):751–760

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li X, He Z, Zhao X, Wang Q, Zhou B, Yu D, Huang X, Tang D, Guo X, Liu X (2013) Molecular character of a phosphatase 2C (PP2C) gene relation to stress tolerance in Arabidopsis thaliana. Mol Biol Rep 40(3):2633–2644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong X (2012) A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot 63(16):5873–5885

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors S, RS, and AM are thankful to CSIR, New Delhi, India for CSIR-SRF fellowship.

Conflict of interest

The authors declare that no conflicting interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Sharma.

Additional information

Handling Editor: Bhumi Nath Tripathi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchita, Singh, R., Mishra, A. et al. Physiological performance, secondary metabolite and expression profiling of genes associated with drought tolerance in Withania somnifera . Protoplasma 252, 1439–1450 (2015). https://doi.org/10.1007/s00709-015-0771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0771-z

Keywords

Navigation