Skip to main content

Advertisement

Log in

Proteolysis mediated by cysteine cathepsins and legumain—recent advances and cell biological challenges

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Proteases play essential roles in protein degradation, protein processing, and extracellular matrix remodeling in all cell types and tissues. They are also involved in protein turnover for maintenance of homeostasis and protein activation or inactivation for cell signaling. Proteases range in function and specificity, with some performing distinct substrate cleavages, while others accomplish proteolysis of a wide range of substrates. As such, different cell types use specialized molecular mechanisms to regulate the localization of proteases and their function within the compartments to which they are destined. Here, we focus on the cysteine family of cathepsin proteases and legumain, which act predominately within the endo-lysosomal pathway. In particular, recent knowledge on cysteine cathepsins and their primary regulator legumain is scrutinized in terms of their trafficking to endo-lysosomal compartments and other less recognized cellular locations. We further explore the mechanisms that regulate these processes and point to pathological cases which arise from detours taken by these proteases. Moreover, the emerging biological roles of specific forms and variants of cysteine cathepsins and legumain are discussed. These may be decisive, pathogenic, or even deadly when localizing to unusual cellular compartments in their enzymatically active form, because they may exert unexpected effects by alternative substrate cleavage. Hence, we propose future perspectives for addressing the actions of cysteine cathepsins and legumain as well as their specific forms and variants. The increasing knowledge in non-canonical aspects of cysteine cathepsin- and legumain-mediated proteolysis may prove valuable for developing new strategies to utilize these versatile proteases in therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abudula A, Rommerskirch W, Weber E, Gunther D, Wiederanders B (2001) Splice variants of human cathepsin L mRNA show different expression rates. Biol Chem 382:1583–1591. doi:10.1515/BC.2001.193

    CAS  PubMed  Google Scholar 

  • Aits S, Jaattela M (2013) Lysosomal cell death at a glance. J Cell Sci 126:1905–1912. doi:10.1242/jcs.091181

    CAS  PubMed  Google Scholar 

  • Akkari L et al (2014) Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix. Genes Dev 28:2134–2150. doi:10.1101/gad.249599.114

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alvarez-Diaz S et al (2009) Cystatin D is a candidate tumor suppressor gene induced by vitamin D in human colon cancer cells. J Clin Invest 119:2343–2358

    CAS  PubMed  Google Scholar 

  • Alvarez-Fernandez M, Barrett AJ, Gerhartz B, Dando PM, Ni J, Abrahamson M (1999) Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J Biol Chem 274:19195–19203

    CAS  PubMed  Google Scholar 

  • Andrade V et al (2011) Nucleoplasmic calcium regulates cell proliferation through legumain. J Hepatol 55:626–635. doi:10.1016/j.jhep.2010.12.022

    PubMed Central  CAS  PubMed  Google Scholar 

  • Andrews NW (2000) Regulated secretion of conventional lysosomes. Trends Cell Biol 10:316–321

    CAS  PubMed  Google Scholar 

  • Arampatzidou M, Rehders M, Dauth S, Yu DM, Tedelind S, Brix K (2011) Imaging of protease functions—current guide to spotting cysteine cathepsins in classical and novel scenes of action in mammalian epithelial cells and tissues. Ital J Anat Embryol 116:1–19

    PubMed  Google Scholar 

  • Arampatzidou M, Schutte A, Hansson GC, Saftig P, Brix K (2012) Effects of cathepsin K deficiency on intercellular junction proteins, luminal mucus layers, and extracellular matrix constituents in the mouse colon. Biol Chem 393:1391–1403. doi:10.1515/hsz-2012-0204

    CAS  PubMed  Google Scholar 

  • Arora S, Chauhan SS (2002) Identification and characterization of a novel human cathepsin L splice variant. Gene 293:123–131

    CAS  PubMed  Google Scholar 

  • Ashkenazi A, Salvesen G (2014) Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol 30:337–356. doi:10.1146/annurev-cellbio-100913-013226

    CAS  PubMed  Google Scholar 

  • Attie AD, Seidah NG (2005) Dual regulation of the LDL receptor—some clarity and new questions. Cell Metab 1:290–292. doi:10.1016/j.cmet.2005.04.006

    CAS  PubMed  Google Scholar 

  • auf dem Keller U, Schilling O (2010) Proteomic techniques and activity-based probes for the system-wide study of proteolysis. Biochimie 92:1705–1714. doi:10.1016/j.biochi.2010.04.027

    CAS  PubMed  Google Scholar 

  • Baici A, Muntener K, Willimann A, Zwicky R (2006) Regulation of human cathepsin B by alternative mRNA splicing: homeostasis, fatal errors and cell death. Biol Chem 387:1017–1021. doi:10.1515/BC.2006.125

    CAS  PubMed  Google Scholar 

  • Baici A, Novinec M, Lenarcic B (2013) Kinetics of the interaction of peptidases with substrates and modifiers. In: Brix K, Stöcker W (eds) Proteases: structure and function. pp 37–84

  • Barkan DT, Hostetter DR, Mahrus S, Pieper U, Wells JA, Craik CS, Sali A (2010) Prediction of protease substrates using sequence and structure features. Bioinformatics 26:1714–1722. doi:10.1093/bioinformatics/btq267

    PubMed Central  CAS  PubMed  Google Scholar 

  • Berdowska I (2004) Cysteine proteases as disease markers. Clin Chim Acta 342:41–69. doi:10.1016/j.cccn.2003.12.016

    CAS  PubMed  Google Scholar 

  • Berquin IM, Cao L, Fong D, Sloane BF (1995) Identification of two new exons and multiple transcription start points in the 5′-untranslated region of the human cathepsin-B-encoding gene. Gene 159:143–149

    CAS  PubMed  Google Scholar 

  • Bestvater F, Dallner C, Spiess E (2005) The C-terminal subunit of artificially truncated human cathepsin B mediates its nuclear targeting and contributes to cell viability. BMC Cell Biol 6:16. doi:10.1186/1471-2121-6-16

    PubMed Central  PubMed  Google Scholar 

  • Biniossek ML, Nagler DK, Becker-Pauly C, Schilling O (2011) Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. J Proteome Res 10:5363–5373. doi:10.1021/pr200621z

    CAS  PubMed  Google Scholar 

  • Bissig C, Gruenberg J (2014) ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol 24:19–25. doi:10.1016/j.tcb.2013.10.009

    CAS  PubMed  Google Scholar 

  • Blott EJ, Griffiths GM (2002) Secretory lysosomes. Nat Rev Mol Cell Biol 3:122–131. doi:10.1038/nrm732

    CAS  PubMed  Google Scholar 

  • Blum G (2008) Use of fluorescent imaging to investigate pathological protease activity. Curr Opin Drug Discov Devel 11:708–716

    CAS  PubMed  Google Scholar 

  • Blum G, Weimer RM, Edgington LE, Adams W, Bogyo M (2009) Comparative assessment of substrates and activity based probes as tools for non-invasive optical imaging of cysteine protease activity. PLoS One 4:e6374. doi:10.1371/journal.pone.0006374

    PubMed Central  PubMed  Google Scholar 

  • Bode W, Engh R, Musil D, Laber B, Stubbs M, Huber R, Turk V (1990) Mechanism of interaction of cysteine proteinases and their protein inhibitors as compared to the serine proteinase-inhibitor interaction. Biol Chem Hoppe Seyler 371(Suppl):111–118

    CAS  PubMed  Google Scholar 

  • Briggs JJ et al (2010) Cystatin E/M suppresses legumain activity and invasion of human melanoma. BMC Cancer 10:17. doi:10.1186/1471-2407-10-17

    PubMed Central  PubMed  Google Scholar 

  • Briguglio JS, Kumar S, Turkewitz AP (2013) Lysosomal sorting receptors are essential for secretory granule biogenesis in Tetrahymena. J Cell Biol 203:537–550. doi:10.1083/jcb.201305086

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brix K (2005) Lysosomal proteases: revival of the sleeping beauty. In: Saftig P (ed) Lysosomes

  • Brix K, Stöcker W (eds) (2013) Proteases: structure and function.

  • Brix K, Lemansky P, Herzog V (1996) Evidence for extracellularly acting cathepsins mediating thyroid hormone liberation in thyroid epithelial cells. Endocrinology 137:1963–1974. doi:10.1210/endo.137.5.8612537

    CAS  PubMed  Google Scholar 

  • Brix K, Linke M, Tepel C, Herzog V (2001) Cysteine proteinases mediate extracellular prohormone processing in the thyroid. Biol Chem 382:717–725. doi:10.1515/BC.2001.087

    CAS  PubMed  Google Scholar 

  • Brix K, Dunkhorst A, Mayer K, Jordans S (2008) Cysteine cathepsins: cellular roadmap to different functions. Biochimie 90:194–207. doi:10.1016/j.biochi.2007.07.024

    CAS  PubMed  Google Scholar 

  • Brix K, Scott C, Heck M (2013) Compartmentalization of proteolysis. In: Brix K, Stöcker W (eds) Proteases: structure and function. pp 85–126

  • Bromme D, Lecaille F (2009) Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin Investig Drugs 18:585–600. doi:10.1517/13543780902832661

    PubMed Central  PubMed  Google Scholar 

  • Brooks CL, Lemieux MJ (2013) Untangling structure-function relationships in the rhomboid family of intramembrane proteases. Biochim Biophys Acta 1828:2862–2872. doi:10.1016/j.bbamem.2013.05.003

    CAS  PubMed  Google Scholar 

  • Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A 96:11041–11048

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burden RE, Snoddy P, Jefferies CA, Walker B, Scott CJ (2007) Inhibition of cathepsin L-like proteases by cathepsin V propeptide. Biol Chem 388:541–545. doi:10.1515/BC.2007.053

    CAS  PubMed  Google Scholar 

  • Burden RE et al (2012) Inhibition of cathepsin S by Fsn0503 enhances the efficacy of chemotherapy in colorectal carcinomas. Biochimie 94:487–493. doi:10.1016/j.biochi.2011.08.017

    CAS  PubMed  Google Scholar 

  • Buth H et al (2007) Cathepsin B is essential for regeneration of scratch-wounded normal human epidermal keratinocytes. Eur J Cell Biol 86:747–761. doi:10.1016/j.ejcb.2007.03.009

    PubMed  Google Scholar 

  • Butinar M et al (2014) Stefin B deficiency reduces tumor growth via sensitization of tumor cells to oxidative stress in a breast cancer model. Oncogene 33:3392–3400. doi:10.1038/onc.2013.314

    CAS  PubMed  Google Scholar 

  • Butler GS, Overall CM (2009) Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat Rev Drug Discov 8:935–948. doi:10.1038/nrd2945

    CAS  PubMed  Google Scholar 

  • Canuel M, Libin Y, Morales CR (2009) The interactomics of sortilin: an ancient lysosomal receptor evolving new functions. Histol Histopathol 24:481–492

    CAS  PubMed  Google Scholar 

  • Cavallo-Medved D, Dosescu J, Linebaugh BE, Sameni M, Rudy D, Sloane BF (2003) Mutant K-ras regulates cathepsin B localization on the surface of human colorectal carcinoma cells. Neoplasia 5:507–519

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ceru S et al (2010) Stefin B interacts with histones and cathepsin L in the nucleus. J Biol Chem 285:10078–10086. doi:10.1074/jbc.M109.034793

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cesen MH, Repnik U, Turk V, Turk B (2013) Siramesine triggers cell death through destabilisation of mitochondria, but not lysosomes. Cell Death Dis 4:e818. doi:10.1038/cddis.2013.361

    PubMed  Google Scholar 

  • Chan CB et al (2009) Mice lacking asparaginyl endopeptidase develop disorders resembling hemophagocytic syndrome. Proc Natl Acad Sci U S A 106:468–473. doi:10.1073/pnas.0809824105

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chapman HA (2004) Cathepsins as transcriptional activators? Dev Cell 6:610–611

    CAS  PubMed  Google Scholar 

  • Chapman HA, Riese RJ, Shi GP (1997) Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 59:63–88. doi:10.1146/annurev.physiol.59.1.63

    CAS  PubMed  Google Scholar 

  • Chen JM, Dando PM, Stevens RA, Fortunato M, Barrett AJ (1998) Cloning and expression of mouse legumain, a lysosomal endopeptidase. Biochem J 335(Pt 1):111–117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP (2011) Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets 11:239–253

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clark RA (2008) Oxidative stress and “senescent” fibroblasts in non-healing wounds as potential therapeutic targets. J Invest Dermatol 128:2361–2364. doi:10.1038/jid.2008.257

    CAS  PubMed  Google Scholar 

  • Conus S, Simon HU (2010) Cathepsins and their involvement in immune responses. Swiss Med Wkly 140:w13042. doi:10.4414/smw.2010.13042

    PubMed  Google Scholar 

  • Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392. doi:10.1126/science.1067100

    CAS  PubMed  Google Scholar 

  • Coutinho MF, Prata MJ, Alves S (2012) A shortcut to the lysosome: the mannose-6-phosphate-independent pathway. Mol Genet Metab 107:257–266. doi:10.1016/j.ymgme.2012.07.012

    CAS  PubMed  Google Scholar 

  • Coutinho MF et al (2014) Molecular and computational analyses of genes involved in mannose 6-phosphate independent trafficking. Clin Genet. doi:10.1111/cge.12469

    PubMed  Google Scholar 

  • Dall E, Brandstetter H (2012) Activation of legumain involves proteolytic and conformational events, resulting in a context- and substrate-dependent activity profile. Acta Crystallogr Sect F: Struct Biol Cryst Commun 68:24–31. doi:10.1107/S1744309111048020

    CAS  Google Scholar 

  • Dall E, Brandstetter H (2013) Mechanistic and structural studies on legumain explain its zymogenicity, distinct activation pathways, and regulation. Proc Natl Acad Sci U S A 110:10940–10945. doi:10.1073/pnas.1300686110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dauth S, Arampatzidou M, Rehders M, Yu D, Führer D, Brix K (2011a) Thyroid cathepsin K: roles in physiology and thyroid disease. Clin Rev Bone Miner Metab 9:94–106. doi:10.1007/s12018-011-9093-7

    CAS  Google Scholar 

  • Dauth S et al (2011b) Cathepsin K deficiency in mice induces structural and metabolic changes in the central nervous system that are associated with learning and memory deficits. BMC Neurosci 12:74. doi:10.1186/1471-2202-12-74

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dauth S, Schmidt MM, Rehders M, Dietz F, Kelm S, Dringen R, Brix K (2012) Characterisation and metabolism of astroglia-rich primary cultures from cathepsin K-deficient mice. Biol Chem 393:959–970. doi:10.1515/hsz-2012-0145

    CAS  PubMed  Google Scholar 

  • Davidson HW, Rhodes CJ, Hutton JC (1988) Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature 333:93–96. doi:10.1038/333093a0

    CAS  PubMed  Google Scholar 

  • De Duve C (2005) The lysosome turns fifty. Nat Cell Biol 7:847–849. doi:10.1038/ncb0905-847

    PubMed  Google Scholar 

  • Demuth HU, McIntosh CH, Pederson RA (2005) Type 2 diabetes—therapy with dipeptidyl peptidase IV inhibitors. Biochim Biophys Acta 1751:33–44. doi:10.1016/j.bbapap.2005.05.010

    CAS  PubMed  Google Scholar 

  • Desnoyers LR et al (2013) Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci Transl Med 5:207ra144 doi:10.1126/scitranslmed.3006682

  • Deu E, Verdoes M, Bogyo M (2012) New approaches for dissecting protease functions to improve probe development and drug discovery. Nat Struct Mol Biol 19:9–16. doi:10.1038/nsmb.2203

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dickey SW, Baker RP, Cho S, Urban S (2013) Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity. Cell 155:1270–1281. doi:10.1016/j.cell.2013.10.053

    PubMed Central  CAS  PubMed  Google Scholar 

  • Diederich S et al (2012) Activation of the Nipah virus fusion protein in MDCK cells is mediated by cathepsin B within the endosome-recycling compartment. J Virol 86:3736–3745. doi:10.1128/JVI. 06628-11

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doucet A, Overall CM (2008) Protease proteomics: revealing protease in vivo functions using systems biology approaches. Mol Aspects Med 29:339–358. doi:10.1016/j.mam.2008.04.003

    CAS  PubMed  Google Scholar 

  • Doucet A, Butler GS, Rodriguez D, Prudova A, Overall CM (2008) Metadegradomics: toward in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome. Mol Cell Proteomics 7:1925–1951. doi:10.1074/mcp. R800012-MCP200

    CAS  PubMed  Google Scholar 

  • Driessen C et al (1999) Cathepsin S controls the trafficking and maturation of MHC class II molecules in dendritic cells. J Cell Biol 147:775–790

    PubMed Central  CAS  PubMed  Google Scholar 

  • Droga-Mazovec G et al (2008) Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J Biol Chem 283:19140–19150. doi:10.1074/jbc.M802513200

    CAS  PubMed  Google Scholar 

  • Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF, Allis CD (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135:284–294

    PubMed Central  CAS  PubMed  Google Scholar 

  • Edgington LE, Verdoes M, Bogyo M (2011) Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Curr Opin Chem Biol 15:798–805. doi:10.1016/j.cbpa.2011.10.012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Erickson A, Isidoro C, Mach L, Mort J (2013) Cathepsins: getting in shape for lysosomal proteolysis. In: Brix K, Stöcker W (eds) Proteases: structure and function. pp 127–174

  • Flütsch A, Grütter G (2013) Proteases in death pathways. In: Brix K, Stöcker W (eds) Proteases: structure and function. pp 265–302

  • Fonovic M, Turk B (2014) Cysteine cathepsins and their potential in clinical therapy and biomarker discovery. Proteomics Clin Appl 8:416–426. doi:10.1002/prca.201300085

    CAS  PubMed  Google Scholar 

  • Friedrichs B et al (2003) Thyroid functions of mouse cathepsins B, K, and L. J Clin Invest 111:1733–1745. doi:10.1172/JCI15990

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gansz M, Kern U, Peters C, Reinheckel T (2013) Exploring systemic functions of lysosomal proteases: the perspective of genetically modified mouse models. In: Brix K, Stöcker W (eds) Proteases: structure and function. pp 217–234

  • Gevaert K, Van Damme P, Ghesquiere B, Impens F, Martens L, Helsens K, Vandekerckhove J (2007) A la carte proteomics with an emphasis on gel-free techniques. Proteomics 7:2698–2718. doi:10.1002/pmic.200700114

    CAS  PubMed  Google Scholar 

  • Gocheva V, Joyce JA (2007) Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6:60–64

    CAS  PubMed  Google Scholar 

  • Gocheva V et al (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20:543–556. doi:10.1101/gad.1407406

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gong Q, Chan SJ, Bajkowski AS, Steiner DF, Frankfater A (1993) Characterization of the cathepsin B gene and multiple mRNAs in human tissues: evidence for alternative splicing of cathepsin B pre-mRNA. DNA Cell Biol 12:299–309

    CAS  PubMed  Google Scholar 

  • Goulet B, Nepveu A (2004) Complete and limited proteolysis in cell cycle progression. Cell Cycle 3:986–989

    CAS  PubMed  Google Scholar 

  • Goulet B et al (2004) A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell 14:207–219

    CAS  PubMed  Google Scholar 

  • Groth-Pedersen L, Jaattela M (2013) Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett 332:265–274. doi:10.1016/j.canlet.2010.05.021

    CAS  PubMed  Google Scholar 

  • Grötzinger J, Rose-John S (2013) ADAM proteases in physiology and pathophysiology: cleave to function in health or to cause disease. In: Brix K, Stöcker W (eds) Proteases: structure and function. pp 303–318

  • Guay D, Beaulieu C, Percival MD (2010) Therapeutic utility and medicinal chemistry of cathepsin C inhibitors. Curr Top Med Chem 10:708–716

    CAS  PubMed  Google Scholar 

  • Guttmann RP, Powell TJ (2012) Redox regulation of cysteine-dependent enzymes in neurodegeneration. Int J Cell Biol 2012:703164. doi:10.1155/2012/703164

    PubMed Central  PubMed  Google Scholar 

  • Halangk W et al (2000) Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 106:773–781. doi:10.1172/JCI9411

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haugen MH, Johansen HT, Pettersen SJ, Solberg R, Brix K, Flatmark K, Maelandsmo GM (2013) Nuclear legumain activity in colorectal cancer. PLoS One 8:e52980. doi:10.1371/journal.pone.0052980

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hauptmann J, Sturzebecher J (1999) Synthetic inhibitors of thrombin and factor Xa: from bench to bedside. Thromb Res 93:203–241

    CAS  PubMed  Google Scholar 

  • Holland P, Torgersen ML, Sandvig K, Simonsen A (2014) LYST affects lysosome size and quantity, but not trafficking or degradation through autophagy or endocytosis. Traffic. doi:10.1111/tra.12227

    PubMed  Google Scholar 

  • Hook V, Schechter I, Demuth HU, Hook G (2008) Alternative pathways for production of beta-amyloid peptides of Alzheimer’s disease. Biol Chem 389:993–1006. doi:10.1515/BC.2008.124

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hook V, Hook G, Kindy M (2010) Pharmacogenetic features of cathepsin B inhibitors that improve memory deficit and reduce beta-amyloid related to Alzheimer’s disease. Biol Chem 391:861–872. doi:10.1515/BC.2010.110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hook V, Funkelstein L, Wegrzyn J, Bark S, Kindy M, Hook G (2012) Cysteine Cathepsins in the secretory vesicle produce active peptides: cathepsin L generates peptide neurotransmitters and cathepsin B produces beta-amyloid of Alzheimer’s disease. Biochim Biophys Acta 1824:89–104. doi:10.1016/j.bbapap.2011.08.015

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huber EM, Groll M (2012) Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development. Angew Chem Int Ed Engl 51:8708–8720. doi:10.1002/anie.201201616

    CAS  PubMed  Google Scholar 

  • Ishii S (1994) Legumain: asparaginyl endopeptidase. Methods Enzymol 244:604–615

    CAS  PubMed  Google Scholar 

  • Jahn R, Sudhof TC (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911. doi:10.1146/annurev.biochem.68.1.863

    CAS  PubMed  Google Scholar 

  • Jean D, Rousselet N, Frade R (2008) Cathepsin L expression is up-regulated by hypoxia in human melanoma cells: role of its 5′-untranslated region. Biochem J 413:125–134. doi:10.1042/BJ20071255

    CAS  PubMed  Google Scholar 

  • Jeffery CJ (2011) Proteins with neomorphic moonlighting functions in disease. IUBMB Life 63:489–494. doi:10.1002/iub.504

    CAS  PubMed  Google Scholar 

  • Jordans S et al (2009) Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC Biochem 10:23. doi:10.1186/1471-2091-10-23

    PubMed Central  PubMed  Google Scholar 

  • Joyce JA, Hanahan D (2004) Multiple roles for cysteine cathepsins in cancer. Cell Cycle 3:1516–1619

    CAS  PubMed  Google Scholar 

  • Justa-Schuch D, Moller U, Geiss-Friedlander R (2014) The amino terminus extension in the long dipeptidyl peptidase 9 isoform contains a nuclear localization signal targeting the active peptidase to the nucleus. Cell Mol Life Sci 71:3611–3626. doi:10.1007/s00018-014-1591-6

    CAS  PubMed  Google Scholar 

  • Katunuma N (2011) Structure-based development of specific inhibitors for individual cathepsins and their medical applications. Proc Jpn Acad Ser B Phys Biol Sci 87:29–39

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kebede MA et al (2014) SORCS1 is necessary for normal insulin secretory granule biogenesis in metabolically stressed beta cells. J Clin Invest 124:4240–4256. doi:10.1172/JCI74072

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kembhavi AA, Buttle DJ, Knight CG, Barrett AJ (1993) The two cysteine endopeptidases of legume seeds: purification and characterization by use of specific fluorometric assays. Arch Biochem Biophys 303:208–213. doi:10.1006/abbi.1993.1274

    CAS  PubMed  Google Scholar 

  • Keppler D, Sloane BF (1996) Cathepsin B: multiple enzyme forms from a single gene and their relation to cancer. Enzyme Protein 49:94–105

    CAS  PubMed  Google Scholar 

  • Kornfeld S, Mellman I (1989) The biogenesis of lysosomes. Annu Rev Cell Biol 5:483–525. doi:10.1146/annurev.cb.05.110189.002411

    CAS  PubMed  Google Scholar 

  • Kos J, Vizin T, Fonovic UP, Pislar A (2014) Intracellular signaling by cathepsin X: molecular mechanisms and diagnostic and therapeutic opportunities in cancer. Semin Cancer Biol. doi:10.1016/j.semcancer.2014.05.001

    PubMed  Google Scholar 

  • Kostoulas G, Lang A, Trueb B, Baici A (1997) Differential expression of mRNAs for endopeptidases in phenotypically modulated (‘dedifferentiated’) human articular chondrocytes. FEBS Lett 412:453–455

    CAS  PubMed  Google Scholar 

  • Lah TT, Duran Alonso MB, Van Noorden CJ (2006) Antiprotease therapy in cancer: hot or not? Expert Opin Biol Ther 6:257–279. doi:10.1517/14712598.6.3.257

    CAS  PubMed  Google Scholar 

  • Lange PF, Overall CM (2011) TopFIND, a knowledgebase linking protein termini with function. Nat Methods 8:703–704. doi:10.1038/nmeth.1669

    CAS  PubMed  Google Scholar 

  • Law RH et al (2006) An overview of the serpin superfamily. Genome Biol 7:216. doi:10.1186/gb-2006-7-5-216

    PubMed Central  PubMed  Google Scholar 

  • Lechner AM, Assfalg-Machleidt I, Zahler S, Stoeckelhuber M, Machleidt W, Jochum M, Nagler DK (2006) RGD-dependent binding of procathepsin X to integrin alphavbeta3 mediates cell-adhesive properties. J Biol Chem 281:39588–39597. doi:10.1074/jbc.M513439200

    CAS  PubMed  Google Scholar 

  • Lee J, Bogyo M (2013) Target deconvolution techniques in modern phenotypic profiling. Curr Opin Chem Biol 17:118–126. doi:10.1016/j.cbpa.2012.12.022

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee S, Kim K (2012) Protease activity: meeting its theranostic potential. Theranostics 2:125–126. doi:10.7150/thno.4129

    PubMed Central  PubMed  Google Scholar 

  • Lee TK et al (2011) An N-terminal truncated carboxypeptidase E splice isoform induces tumor growth and is a biomarker for predicting future metastasis in human cancers. J Clin Invest 121:880–892. doi:10.1172/JCI40433

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li DN, Matthews SP, Antoniou AN, Mazzeo D, Watts C (2003) Multistep autoactivation of asparaginyl endopeptidase in vitro and in vivo. J Biol Chem 278:38980–38990

    CAS  PubMed  Google Scholar 

  • Li EC, Heran BS, Wright JM (2014) Angiotensin converting enzyme (ACE) inhibitors versus angiotensin receptor blockers for primary hypertension. Cochrane Database Syst Rev 8, CD009096. doi:10.1002/14651858.CD009096.pub2

    PubMed  Google Scholar 

  • Lichtenthaler SF, Haass C, Steiner H (2011) Regulated intramembrane proteolysis—lessons from amyloid precursor protein processing. J Neurochem 117:779–796. doi:10.1111/j.1471-4159.2011.07248.x

    CAS  PubMed  Google Scholar 

  • Lima H Jr, Jacobson LS, Goldberg MF, Chandran K, Diaz-Griffero F, Lisanti MP, Brojatsch J (2013) Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle 12:1868–1878. doi:10.4161/cc.24903

    CAS  PubMed  Google Scholar 

  • Lin Y et al (2014) Functional role of asparaginyl endopeptidase ubiquitination by TRAF6 in tumor invasion and metastasis. J Natl Cancer Inst 106:dju012 doi:10.1093/jnci/dju012

  • Lines KE, Chelala C, Dmitrovic B, Wijesuriya N, Kocher HM, Marshall JF, Crnogorac-Jurcevic T (2012) S100P-binding protein, S100PBP, mediates adhesion through regulation of cathepsin Z in pancreatic cancer cells. Am J Pathol 180:1485–1494. doi:10.1016/j.ajpath.2011.12.031

    CAS  PubMed  Google Scholar 

  • Linke M, Herzog V, Brix K (2002a) Trafficking of lysosomal cathepsin B-green fluorescent protein to the surface of thyroid epithelial cells involves the endosomal/lysosomal compartment. J Cell Sci 115:4877–4889

    CAS  PubMed  Google Scholar 

  • Linke M, Jordans S, Mach L, Herzog V, Brix K (2002b) Thyroid stimulating hormone upregulates secretion of cathepsin B from thyroid epithelial cells. Biol Chem 383:773–784. doi:10.1515/BC.2002.081

    CAS  PubMed  Google Scholar 

  • Liu C, Sun C, Huang H, Janda K, Edgington T (2003) Overexpression of legumain in tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy. Cancer Res 63:2957–2964

    CAS  PubMed  Google Scholar 

  • Liu Y, Bajjuri KM, Liu C, Sinha SC (2012) Targeting cell surface alpha(v)beta(3) integrin increases therapeutic efficacies of a legumain protease-activated auristatin prodrug. Mol Pharm 9:168–175. doi:10.1021/mp200434n

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lohmuller T, Wenzler D, Hagemann S, Kiess W, Peters C, Dandekar T, Reinheckel T (2003) Toward computer-based cleavage site prediction of cysteine endopeptidases. Biol Chem 384:899–909. doi:10.1515/BC.2003.101

    PubMed  Google Scholar 

  • Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:30433–30437. doi:10.1074/jbc.R800035200

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7:800–808. doi:10.1038/nrc2228

    CAS  PubMed  Google Scholar 

  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217. doi:10.1016/j.cell.2013.05.039

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luke CJ et al (2007) An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury. Cell 130:1108–1119. doi:10.1016/j.cell.2007.07.013

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luzio JP, Hackmann Y, Dieckmann NM, Griffiths GM (2014) The biogenesis of lysosomes and lysosome-related organelles. Cold Spring Harb Perspect Biol 6 doi:10.1101/cshperspect.a016840

  • Mach L (2002) Biosynthesis of lysosomal proteinases in health and disease. Biol Chem 383:751–756. doi:10.1515/BC.2002.078

    CAS  PubMed  Google Scholar 

  • Mach L, Stuwe K, Hagen A, Ballaun C, Glossl J (1992) Proteolytic processing and glycosylation of cathepsin B. The role of the primary structure of the latent precursor and of the carbohydrate moiety for cell-type-specific molecular forms of the enzyme. Biochem J 282(Pt 2):577–582

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maehr R et al (2005) Asparagine endopeptidase is not essential for class II MHC antigen presentation but is required for processing of cathepsin L in mice. J Immunol 174:7066–7074

    CAS  PubMed  Google Scholar 

  • Maher K et al (2014) A role for stefin B (cystatin B) in inflammation and endotoxemia. J Biol Chem. doi:10.1074/jbc.M114.609396

    Google Scholar 

  • Mao HT, Yang WX (2013) Modes of acrosin functioning during fertilization. Gene 526:75–79. doi:10.1016/j.gene.2013.05.058

    CAS  PubMed  Google Scholar 

  • Marks MS, Heijnen HF, Raposo G (2013) Lysosome-related organelles: unusual compartments become mainstream. Curr Opin Cell Biol 25:495–505. doi:10.1016/j.ceb.2013.04.008

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mason SD, Joyce JA (2011) Proteolytic networks in cancer. Trends Cell Biol 21:228–237. doi:10.1016/j.tcb.2010.12.002

    CAS  PubMed  Google Scholar 

  • Mayer K, Schwartz S, Lentze MJ, Kalff JC, Brix K (2006) Extracellular localization of intestinal cathepsins: implications for their actions during post-operative ileus. In: Vollmar B (ed) XLI Congress of the European Society for Surgical Research. MEDIMOND S.r.l, Bologna, pp 63–66. ISBN 88-7587-243-0

    Google Scholar 

  • Mayer K, Vreemann A, Qu H, Brix K (2009) Release of endo-lysosomal cathepsins B, D, and L from IEC6 cells in a cell culture model mimicking intestinal manipulation. Biol Chem 390:471–480. doi:10.1515/BC.2009.047

    CAS  PubMed  Google Scholar 

  • McGrath ME (1999) The lysosomal cysteine proteases. Annu Rev Biophys Biomol Struct 28:181–204. doi:10.1146/annurev.biophys.28.1.181

    CAS  PubMed  Google Scholar 

  • Mehtani S, Gong Q, Panella J, Subbiah S, Peffley DM, Frankfater A (1998) In vivo expression of an alternatively spliced human tumor message that encodes a truncated form of cathepsin B. Subcellular distribution of the truncated enzyme in COS cells. J Biol Chem 273:13236–13244

    CAS  PubMed  Google Scholar 

  • Melo FR, Vita F, Berent-Maoz B, Levi-Schaffer F, Zabucchi G, Pejler G (2014) Proteolytic histone modification by mast cell tryptase, a serglycin proteoglycan-dependent secretory granule protease. J Biol Chem 289:7682–7690. doi:10.1074/jbc.M113.546895

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meschini S, Condello M, Lista P, Arancia G (2011) Autophagy: molecular mechanisms and their implications for anticancer therapies. Curr Cancer Drug Targets 11:357–379

    CAS  PubMed  Google Scholar 

  • Mikhaylov G et al (2011) Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol 6:594–602. doi:10.1038/nnano.2011.112

    CAS  PubMed  Google Scholar 

  • Mikhaylov G et al (2014) Selective targeting of tumor and stromal cells by a nanocarrier system displaying lipidated cathepsin b inhibitor. Angew Chem Int Ed Engl 53:10077–10081. doi:10.1002/anie.201402305

    CAS  PubMed  Google Scholar 

  • Mittal S, Mir RA, Chauhan SS (2011) Post-transcriptional regulation of human cathepsin L expression. Biol Chem 392:405–413. doi:10.1515/BC.2011.039

    CAS  PubMed  Google Scholar 

  • Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6:764–775. doi:10.1038/nrc1949

    CAS  PubMed  Google Scholar 

  • Moin K, Sameni M, Victor BC, Rothberg JM, Mattingly RR, Sloane BF (2012) 3D/4D functional imaging of tumor-associated proteolysis: impact of microenvironment. Methods Enzymol 506:175–194. doi:10.1016/B978-0-12-391856-7.00034-2

    CAS  PubMed  Google Scholar 

  • Mort JS, Buttle DJ (1997) Cathepsin B. Int J Biochem Cell Biol 29:715–720

    CAS  PubMed  Google Scholar 

  • Mort JS, Recklies AD, Poole AR (1984) Extracellular presence of the lysosomal proteinase cathepsin B in rheumatoid synovium and its activity at neutral pH. Arthritis Rheum 27:509–515

    CAS  PubMed  Google Scholar 

  • Muller S et al (2014) The endolysosomal cysteine cathepsins L and K are involved in macrophage-mediated clearance of Staphylococcus aureus and the concomitant cytokine induction. FASEB J 28:162–175. doi:10.1096/fj.13-232272

    PubMed  Google Scholar 

  • Mullins C, Bonifacino JS (2001) The molecular machinery for lysosome biogenesis. Bioessays 23:333–343. doi:10.1002/bies.1048

    CAS  PubMed  Google Scholar 

  • Munier-Lehmann H, Mauxion F, Hoflack B (1996) Function of the two mannose 6-phosphate receptors in lysosomal enzyme transport. Biochem Soc Trans 24:133–136

    CAS  PubMed  Google Scholar 

  • Muntener K, Zwicky R, Csucs G, Rohrer J, Baici A (2004) Exon skipping of cathepsin B: mitochondrial targeting of a lysosomal peptidase provokes cell death. J Biol Chem 279:41012–41017. doi:10.1074/jbc.M405333200

    PubMed  Google Scholar 

  • Musil D et al (1991) The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J 10:2321–2330

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nagler DK, Storer AC, Portaro FC, Carmona E, Juliano L, Menard R (1997) Major increase in endopeptidase activity of human cathepsin B upon removal of occluding loop contacts. Biochemistry 36:12608–12615. doi:10.1021/bi971264+

  • Nakagawa TY, Rudensky AY (1999) The role of lysosomal proteinases in MHC class II-mediated antigen processing and presentation. Immunol Rev 172:121–129

    CAS  PubMed  Google Scholar 

  • Nakanishi H (2003) Neuronal and microglial cathepsins in aging and age-related diseases. Ageing Res Rev 2:367–381

    CAS  PubMed  Google Scholar 

  • Newland AM, Li JX, Wasco LE, Aziz MT, Lowe DK (2013) Brentuximab vedotin: a CD30-directed antibody-cytotoxic drug conjugate. Pharmacotherapy 33:93–104. doi:10.1002/phar.1170

    CAS  PubMed  Google Scholar 

  • Ng NM, Pike RN, Boyd SE (2009) Subsite cooperativity in protease specificity. Biol Chem 390:401–407. doi:10.1515/BC.2009.065

    CAS  PubMed  Google Scholar 

  • Nomura DK, Dix MM, Cravatt BF (2010) Activity-based protein profiling for biochemical pathway discovery in cancer. Nat Rev Cancer 10:630–638. doi:10.1038/nrc2901

    PubMed Central  CAS  PubMed  Google Scholar 

  • Novinec M, Lenarcic B (2013) Cathepsin K: a unique collagenolytic cysteine peptidase. Biol Chem 394:1163–1179. doi:10.1515/hsz-2013-0134

    CAS  PubMed  Google Scholar 

  • Novinec M, Korenc M, Caflisch A, Ranganathan R, Lenarcic B, Baici A (2014) A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods. Nat Commun 5 doi:10.1038/Ncomms4287

  • Ong PC et al (2007) DNA accelerates the inhibition of human cathepsin V by serpins. J Biol Chem 282:36980–36986. doi:10.1074/jbc.M706991200

    CAS  PubMed  Google Scholar 

  • Overall CM, Blobel CP (2007) In search of partners: linking extracellular proteases to substrates. Nat Rev Mol Cell Biol 8:245–257. doi:10.1038/nrm2120

    CAS  PubMed  Google Scholar 

  • Overall CM, Dean RA (2006) Degradomics: systems biology of the protease web. Pleiotropic roles of MMPs in cancer. Cancer Metastasis Rev 25:69–75. doi:10.1007/s10555-006-7890-0

    PubMed  Google Scholar 

  • Overbye A, Saetre F, Hagen LK, Johansen HT, Seglen PO (2011) Autophagic activity measured in whole rat hepatocytes as the accumulation of a novel BHMT fragment (p10), generated in amphisomes by the asparaginyl proteinase, legumain. Autophagy 7:1011–1027

    PubMed Central  CAS  PubMed  Google Scholar 

  • Palermo C, Joyce JA (2008) Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci 29:22–28. doi:10.1016/j.tips.2007.10.011

    CAS  PubMed  Google Scholar 

  • Pierre P, Mellman I (1998) Developmental regulation of invariant chain proteolysis controls MHC class II trafficking in mouse dendritic cells. Cell 93:1135–1145

    CAS  PubMed  Google Scholar 

  • Pike RN, Wijeyewickrema LC (2013) The molecular switches controlling the interaction between complement proteases of the classical and lectin pathways and their substrates. Curr Opin Struct Biol 23:820–827. doi:10.1016/j.sbi.2013.07.016

    CAS  PubMed  Google Scholar 

  • Platt FM (2014) Sphingolipid lysosomal storage disorders. Nature 510:68–75. doi:10.1038/nature13476

    CAS  PubMed  Google Scholar 

  • Podgorski I, Sloane BF (2003) Cathepsin B and its role(s) in cancer progression. Biochem Soc Symp:263–276

  • Pohlmann R, Nagel G, Hille A, Wendland M, Waheed A, Braulke T, von Figura K (1989) Mannose 6-phosphate specific receptors: structure and function. Biochem Soc Trans 17:15–16

    CAS  PubMed  Google Scholar 

  • Polajnar M et al (2014) Human stefin B role in cell’s response to misfolded proteins and autophagy. PLoS One 9:e102500. doi:10.1371/journal.pone.0102500

    PubMed Central  PubMed  Google Scholar 

  • Poreba M, Strozyk A, Salvesen GS, Drag M (2013) Caspase substrates and inhibitors. Cold Spring Harb Perspect Biol 5:a008680. doi:10.1101/cshperspect.a008680

    PubMed Central  PubMed  Google Scholar 

  • Potempa J, Pike RN (2009) Corruption of innate immunity by bacterial proteases. J Innate Immun 1:70–87. doi:10.1159/000181144

    PubMed Central  CAS  PubMed  Google Scholar 

  • Probst OC et al (2006) The 46-kDa mannose 6-phosphate receptor does not depend on endosomal acidification for delivery of hydrolases to lysosomes. J Cell Sci 119:4935–4943. doi:10.1242/jcs.03283

    CAS  PubMed  Google Scholar 

  • Puente XS, Sanchez LM, Overall CM, Lopez-Otin C (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4:544–558. doi:10.1038/nrg1111

    CAS  PubMed  Google Scholar 

  • Puri AW, Bogyo M (2013) Applications of small molecule probes in dissecting mechanisms of bacterial virulence and host responses. Biochemistry 52:5985–5996. doi:10.1021/bi400854d

    CAS  PubMed  Google Scholar 

  • Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437. doi:10.1038/nm.3394

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rawlings ND (2010) Peptidase inhibitors in the MEROPS database. Biochimie 92:1463–1483. doi:10.1016/j.biochi.2010.04.013

    CAS  PubMed  Google Scholar 

  • Rawlings NDE, Salvesen GE (2013) Handbook of proteolytic enzymes (3rd edn)

  • Rawlings ND, Waller M, Barrett AJ, Bateman A (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42:D503–509. doi:10.1093/nar/gkt953

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reinheckel T (2013) On the road to inflammation: linking lysosome disruption, lysosomal protease release and necrotic death of immune cells. Cell Cycle 12:1994. doi:10.4161/cc.25316

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reinheckel T, Deussing J, Roth W, Peters C (2001) Towards specific functions of lysosomal cysteine peptidases: phenotypes of mice deficient for cathepsin B or cathepsin L. Biol Chem 382:735–741. doi:10.1515/BC.2001.089

    CAS  PubMed  Google Scholar 

  • Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120:3421–3431. doi:10.1172/JCI42918

    PubMed Central  CAS  PubMed  Google Scholar 

  • Repnik U, Turk B (2010) Lysosomal-mitochondrial cross-talk during cell death. Mitochondrion 10:662–669. doi:10.1016/j.mito.2010.07.008

    CAS  PubMed  Google Scholar 

  • Repnik U, Stoka V, Turk V, Turk B (2012) Lysosomes and lysosomal cathepsins in cell death. Biochim Biophys Acta 1824:22–33. doi:10.1016/j.bbapap.2011.08.016

    CAS  PubMed  Google Scholar 

  • Romagnoli P, Herzog V (1991) Transcytosis in thyroid follicle cells: regulation and implications for thyroglobulin transport. Exp Cell Res 194:202–209

    CAS  PubMed  Google Scholar 

  • Rosin FM, Watanabe N, Lam E (2005) Moonlighting vacuolar protease: multiple jobs for a busy protein. Trends Plant Sci 10:516–518. doi:10.1016/j.tplants.2005.09.002

    CAS  PubMed  Google Scholar 

  • Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10:623–635. doi:10.1038/nrm2745

    CAS  PubMed  Google Scholar 

  • Salpeter SJ, Blum G (2013) Ready, set, cleave: proteases in action. Chem Biol 20:137–138. doi:10.1016/j.chembiol.2013.02.004

    CAS  PubMed  Google Scholar 

  • Sameni M, Anbalagan A, Olive MB, Moin K, Mattingly RR, Sloane BF (2012) MAME models for 4D live-cell imaging of tumor: microenvironment interactions that impact malignant progression. J Vis Exp. doi:10.3791/3661

    PubMed Central  PubMed  Google Scholar 

  • Sanderson RJ et al (2005) In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res 11:843–852

    CAS  PubMed  Google Scholar 

  • Sandhoff K (2013) Metabolic and cellular bases of sphingolipidoses. Biochem Soc Trans 41:1562–1568. doi:10.1042/BST20130083

    CAS  PubMed  Google Scholar 

  • Schilling O, Overall CM (2008) Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat Biotechnol 26:685–694. doi:10.1038/nbt1408

    CAS  PubMed  Google Scholar 

  • Schilling K et al (2009) Selectivity of propeptide-enzyme interaction in cathepsin L-like cysteine proteases. Biol Chem 390:167–174. doi:10.1515/BC.2009.023

    CAS  PubMed  Google Scholar 

  • Schilling O, Barre O, Huesgen PF, Overall CM (2010) Proteome-wide analysis of protein carboxy termini: C terminomics. Nat Methods 7:508–511. doi:10.1038/nmeth.1467

    CAS  PubMed  Google Scholar 

  • Seaman MN (2012) The retromer complex—endosomal protein recycling and beyond. J Cell Sci 125:4693–4702. doi:10.1242/jcs.103440

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sevenich L et al (2014) Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat Cell Biol 16:876–888. doi:10.1038/ncb3011

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shahinian H, Tholen S, Schilling O (2013) Proteomic identification of protease cleavage sites: cell-biological and biomedical applications. Expert Rev Proteomics 10:421–433. doi:10.1586/14789450.2013.841547

    CAS  PubMed  Google Scholar 

  • Shen A (2012) Clostridium difficile toxins: mediators of inflammation. J Innate Immun 4:149–158. doi:10.1159/000332946

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shirahama-Noda K, Yamamoto A, Sugihara K, Hashimoto N, Asano M, Nishimura M, Hara-Nishimura I (2003) Biosynthetic processing of cathepsins and lysosomal degradation are abolished in asparaginyl endopeptidase-deficient mice. J Biol Chem 278:33194–33199. doi:10.1074/jbc.M302742200

    CAS  PubMed  Google Scholar 

  • Simon M, Plattner H (2014) Unicellular eukaryotes as models in cell and molecular biology: critical appraisal of their past and future value. Int Rev Cell Mol Biol 309:141–198. doi:10.1016/B978-0-12-800255-1.00003-X

    CAS  PubMed  Google Scholar 

  • Sloane B, List K, Fingleton B, Matrisian L (2013) Proteases in cancer: significance for invasion and metastasis. In: Brix K, Stöcker W (eds) Proteases: structure and function. pp 491–550

  • Smith RL et al (2014) Synthesis of a novel legumain-cleavable colchicine prodrug with cell-specific toxicity. Bioorg Med Chem 22:3309–3315. doi:10.1016/j.bmc.2014.04.056

    CAS  PubMed  Google Scholar 

  • Song J, Tan H, Perry AJ, Akutsu T, Webb GI, Whisstock JC, Pike RN (2012) PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites. PLoS One 7:e50300. doi:10.1371/journal.pone.0050300

    PubMed Central  CAS  PubMed  Google Scholar 

  • Spes A, Sobotic B, Turk V, Turk B (2012) Cysteine cathepsins are not critical for TRAIL- and CD95-induced apoptosis in several human cancer cell lines. Biol Chem 393:1417–1431. doi:10.1515/hsz-2012-0213

    CAS  PubMed  Google Scholar 

  • Stein ML, Groll M (2014) Applied techniques for mining natural proteasome inhibitors. Biochim Biophys Acta 1843:26–38. doi:10.1016/j.bbamcr.2013.01.017

    CAS  PubMed  Google Scholar 

  • Stelzl U et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968. doi:10.1016/j.cell.2005.08.029

    CAS  PubMed  Google Scholar 

  • Strisovsky K, Freeman M (2014) Sharpening rhomboid specificity by dimerisation and allostery. EMBO J 33:1847–1848. doi:10.15252/embj.201489373

    CAS  PubMed  Google Scholar 

  • Sullivan S et al (2009) Localization of nuclear cathepsin L and its association with disease progression and poor outcome in colorectal cancer. Int J Cancer 125:54–61

    CAS  PubMed  Google Scholar 

  • Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240:177–184

    CAS  PubMed  Google Scholar 

  • Tam SW, Cote-Paulino LR, Peak DA, Sheahan K, Murnane MJ (1994) Human cathepsin B-encoding cDNAs: sequence variations in the 3′-untranslated region. Gene 139:171–176

    CAS  PubMed  Google Scholar 

  • Tamhane T et al (2014) The activity and localization patterns of cathepsins B and X in cells of the mouse gastrointestinal tract differ along its length. Biol Chem 395:1201–1219. doi:10.1515/hsz-2014-0151

    CAS  PubMed  Google Scholar 

  • Tedelind S et al (2010) Nuclear cysteine cathepsin variants in thyroid carcinoma cells. Biol Chem 391:923–935. doi:10.1515/BC.2010.109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tedelind S, Jordans S, Resemann H, Blum G, Bogyo M, Fuhrer D, Brix K (2011) Cathepsin B trafficking in thyroid carcinoma cells. Thyroid Res 4(Suppl 1):S2. doi:10.1186/1756-6614-4-S1-S2

    PubMed Central  PubMed  Google Scholar 

  • Tepel C, Bromme D, Herzog V, Brix K (2000) Cathepsin K in thyroid epithelial cells: sequence, localization and possible function in extracellular proteolysis of thyroglobulin. J Cell Sci 113(Pt 24):4487–4498

    CAS  PubMed  Google Scholar 

  • Tholen S, Koczorowska M, Lai Z, Dengjel J, O Schilling (2013) Limited and degradative proteolysis in the context of posttranslational regulatory networks: current technical and conceptional advances. In: Brix K, Stöcker W (eds) Proteases: structure and function. pp 175–216

  • Tholen M, Hillebrand LE, Tholen S, Sedelmeier O, Arnold SJ, Reinheckel T (2014) Out-of-frame start codons prevent translation of truncated nucleo-cytosolic cathepsin L in vivo. Nat Commun 5:4931. doi:10.1038/ncomms5931

    CAS  PubMed  Google Scholar 

  • Tooze J, Hollinshead M, Ludwig T, Howell K, Hoflack B, Kern H (1990) In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J Cell Biol 111:329–345

    CAS  PubMed  Google Scholar 

  • Tooze J, Hollinshead M, Hensel G, Kern HF, Hoflack B (1991) Regulated secretion of mature cathepsin B from rat exocrine pancreatic cells. Eur J Cell Biol 56:187–200

    CAS  PubMed  Google Scholar 

  • Tooze SA, Martens GJ, Huttner WB (2001) Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol 11:116–122

    CAS  PubMed  Google Scholar 

  • Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799. doi:10.1038/nrd2092

    CAS  PubMed  Google Scholar 

  • Turk V (2012) Special issue: proteolysis 50 years after the discovery of lysosome in honor of Christian de Duve. Biochim Biophys Acta 1824:1–2. doi:10.1016/j.bbapap.2011.11.001

    CAS  PubMed  Google Scholar 

  • Turk V, Bode W (1991) The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett 285:213–219

    CAS  PubMed  Google Scholar 

  • Turk B, Stoka V (2007) Protease signalling in cell death: caspases versus cysteine cathepsins. FEBS Lett 581:2761–2767. doi:10.1016/j.febslet.2007.05.038

    CAS  PubMed  Google Scholar 

  • Turk B, Turk V (2009) Lysosomes as “suicide bags” in cell death: myth or reality? J Biol Chem 284:21783–21787. doi:10.1074/jbc.R109.023820

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turk D, Podobnik M, Popovic T, Katunuma N, Bode W, Huber R, Turk V (1995) Crystal structure of cathepsin B inhibited with CA030 at 2.0-A resolution: a basis for the design of specific epoxysuccinyl inhibitors. Biochemistry 34:4791–4797

    CAS  PubMed  Google Scholar 

  • Turk V, Stoka V, Turk D (2008) Cystatins: biochemical and structural properties, and medical relevance. Front Biosci 13:5406–5420

    CAS  PubMed  Google Scholar 

  • Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824:68–88. doi:10.1016/j.bbapap.2011.10.002

    CAS  PubMed  Google Scholar 

  • Turkewitz AP (2004) Out with a bang! Tetrahymena as a model system to study secretory granule biogenesis. Traffic 5:63–68

    CAS  PubMed  Google Scholar 

  • Urban S, Dickey SW (2011) The rhomboid protease family: a decade of progress on function and mechanism. Genome Biol 12:231. doi:10.1186/gb-2011-12-10-231

    PubMed Central  CAS  PubMed  Google Scholar 

  • Urban S, Freeman M (2002) Intramembrane proteolysis controls diverse signalling pathways throughout evolution. Curr Opin Genet Dev 12:512–518

    CAS  PubMed  Google Scholar 

  • Van Damme P et al (2010) Complementary positional proteomics for screening substrates of endo- and exoproteases. Nat Meth 7:512–515. doi:10.1038/nmeth.1469

    Google Scholar 

  • van Meel E, Klumperman J (2008) Imaging and imagination: understanding the endo-lysosomal system. Histochem Cell Biol 129:253–266. doi:10.1007/s00418-008-0384-0

    PubMed Central  CAS  PubMed  Google Scholar 

  • Varki A, Kornfeld S (1980) Identification of a rat liver alpha-N-acetylglucosaminyl phosphodiesterase capable of removing “blocking” alpha-N-acetylglucosamine residues from phosphorylated high mannose oligosaccharides of lysosomal enzymes. J Biol Chem 255:8398–8401

    CAS  PubMed  Google Scholar 

  • Vasiljeva O, Turk B (2008) Dual contrasting roles of cysteine cathepsins in cancer progression: apoptosis versus tumour invasion. Biochimie 90:380–386. doi:10.1016/j.biochi.2007.10.004

    CAS  PubMed  Google Scholar 

  • Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, Turk B (2007) Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des 13:387–403

    CAS  PubMed  Google Scholar 

  • Venkataraman S et al (2013) MicroRNA 218 acts as a tumor suppressor by targeting multiple cancer phenotype-associated genes in medulloblastoma. J Biol Chem 288:1918–1928. doi:10.1074/jbc.M112.396762

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vigneswaran N, Wu J, Nagaraj N, James R, Zeeuwen P, Zacharias W (2006) Silencing of cystatin M in metastatic oral cancer cell line MDA-686Ln by siRNA increases cysteine proteinases and legumain activities, cell proliferation and in vitro invasion. Life Sci 78:898–907. doi:10.1016/j.lfs.2005.05.096

    CAS  PubMed  Google Scholar 

  • Vinothkumar KR, Freeman M (2013) Intramembrane proteolysis by rhomboids: catalytic mechanisms and regulatory principles. Curr Opin Struct Biol 23:851–858. doi:10.1016/j.sbi.2013.07.014

    CAS  PubMed  Google Scholar 

  • von Figura K (1991) Molecular recognition and targeting of lysosomal proteins. Curr Opin Cell Biol 3:642–646

    Google Scholar 

  • Vreemann A et al (2009) Cathepsin B release from rodent intestine mucosa due to mechanical injury results in extracellular matrix damage in early post-traumatic phases. Biol Chem 390:481–492. doi:10.1515/BC.2009.055

    CAS  PubMed  Google Scholar 

  • Wallin H, Abrahamson M, Ekstrom U (2013) Cystatin C properties crucial for uptake and inhibition of intracellular target enzymes. J Biol Chem 288:17019–17029. doi:10.1074/jbc.M113.453449

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watts C, Matthews SP, Mazzeo D, Manoury B, Moss CX (2005) Asparaginyl endopeptidase: case history of a class II MHC compartment protease. Immunol Rev 207:218–228. doi:10.1111/j.0105-2896.2005.00312.x

    CAS  PubMed  Google Scholar 

  • Weber K, Schilling JD (2014) Lysosomes integrate metabolic-inflammatory cross-talk in primary macrophage inflammasome activation. J Biol Chem 289:9158–9171. doi:10.1074/jbc.M113.531202

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weldon S et al (2014) miR-31 dysregulation in cystic fibrosis airways contributes to increased pulmonary cathepsin S production. Am J Respir Crit Care Med 190:165–174. doi:10.1164/rccm.201311-1986OC

    CAS  PubMed  Google Scholar 

  • Wiederanders B, Kaulmann G, Schilling K (2003) Functions of propeptide parts in cysteine proteases. Curr Protein Pept Sci 4:309–326

    CAS  PubMed  Google Scholar 

  • Zhao L et al (2014) Structural analysis of asparaginyl endopeptidase reveals the activation mechanism and a reversible intermediate maturation stage. Cell Res 24:344–358. doi:10.1038/cr.2014.4

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zwicky R, Muntener K, Goldring MB, Baici A (2002) Cathepsin B expression and down-regulation by gene silencing and antisense DNA in human chondrocytes. Biochem J 367:209–217. doi:10.1042/BJ20020210

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zwicky R, Muntener K, Csucs G, Goldring MB, Baici A (2003) Exploring the role of 5′ alternative splicing and of the 3′-untranslated region of cathepsin B mRNA. Biol Chem 384:1007–1018. doi:10.1515/BC.2003.113

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work of our groups was supported by grants from the Deutsche Forschungsgemeinschaft [BR 1308/6-1 to 6-2, 7-1 to 7-3, 10-1, 11-1] and the South-East regional health authorities [HSØ, #2011142].

Conflict of interest

The authors declare that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaudia Brix.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brix, K., McInnes, J., Al-Hashimi, A. et al. Proteolysis mediated by cysteine cathepsins and legumain—recent advances and cell biological challenges. Protoplasma 252, 755–774 (2015). https://doi.org/10.1007/s00709-014-0730-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0730-0

Keywords

Navigation