Skip to main content

Physiological and Pathological Functions of Cysteine Cathepsins

  • Chapter
  • First Online:
Proteases in Physiology and Pathology

Abstract

Cysteine cathepsins are lysosomal hydrolases that belong to the papain family of cysteine proteases. This group comprises of 11 members and a majority of them are endo-proteases. They are initially synthesized as inactive zymogens, which are then processed into their active forms in the acidic and reducing environment of the lysosomes. The most striking element of cysteine cathepsins is their active site that contains a catalytic triad of a cysteine, histidine, and an asparagine residue. Originally, turnover and degradation of intracellular proteins was considered the only function of cysteine cathepsins. However, substantial evidences accumulated over the years have established their role in several physiological and pathological processes. Tissue-specific distribution and gene knockout analysis of these housekeeping proteases established their several physiological functions including antigen presentation, bone and tissue remodeling, keratinocyte differentiation, extracellular matrix degradation, cell cycle regulation, and death. Expression and activity of these proteases are tightly regulated, and their deregulation has been reported in a variety of pathological conditions such as cancer, lung diseases, metabolic disorders, atherosclerosis, cardiomyopathy, rheumatoid arthritis, osteoporosis, etc. These proteases have been proposed to be potential drug targets, and some of their inhibitors are under phase I clinical trial. This chapter presents an overview of the structure, synthesis, mode of action, regulation of expression and activity, and physiological as well as pathological role of lysosomal cysteine cathepsins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

&::

and

APCs::

Antigen-presenting cells

BALF::

Bronchoalveolar lavage fluid

bFGF::

Basic fibroblast growth factor

CLIP::

Class II-associated invariant chain

COPD::

Chronic obstructive pulmonary disease

cTEC::

Cortical thymus epithelial cells

DPPI::

Dipeptidyl aminopeptidase I

ECM::

Extracellular matrix

EMT::

Epithelial-mesenchymal transition

ER::

Endoplasmic reticulum

Ets::

Erythroblast transformation-specific transcription factor

GAGs::

Glycosaminoglycans

hCATL::

human cathepsin L

HMWK::

High-molecular-weight kininogens

IFN::

Interferon

IL::

Interleukin

IR::

Insulin receptor

IRES::

Internal ribosomal entry site

L::

Left-hand domain

LMP::

Lysosomal membrane permeabilization

LMWK::

Low-molecular-weight kininogens

M6PR::

Mannose-6-phosphate receptor

MMPs::

Matrix metalloproteinases

MOMP::

Mitochondrial outer membrane permeabilization

PAI::

Plasminogen activator inhibitor

R::

Right-hand domain

ROS::

Reactive oxygen species

SMA::

Smooth muscle actin

TGF::

Transforming growth factor

TGN::

Trans-Golgi network

TIMP::

Tissue inhibitors of metalloproteinases

TNF::

Tumor necrosis factor

UTR::

Untranslated regions

VEGF::

Vascular endothelial growth factor

XIAP::

X-chromosome-linked inhibitor of apoptosis

References

  1. Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and opportunities. EMBO J 20:4629–4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vasiljeva O, Reinheckel T, Peters C et al (2007) Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des 13:387–403

    Article  CAS  PubMed  Google Scholar 

  3. Brix K, Dunkhorst A, Mayer K et al (2008) Cysteine cathepsins: cellular roadmap to different functions. Biochimie 90:194–207

    Article  CAS  PubMed  Google Scholar 

  4. Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7:800–808

    Article  CAS  PubMed  Google Scholar 

  5. Quesada V, Ordonez GR, Sanchez LM et al (2009) The Degradome database: mammalian proteases and diseases of proteolysis. Nucleic Acids Res 37:D239–D243

    Article  CAS  PubMed  Google Scholar 

  6. Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:30433–30437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Puente XS, Sanchez LM, Overall CM et al (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4:544–558

    Article  CAS  PubMed  Google Scholar 

  8. Rawlings ND, Waller M, Barrett AJ et al (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42:D503–D509

    Article  CAS  PubMed  Google Scholar 

  9. Klingler D, Hardt M (2012) Profiling protease activities by dynamic proteomics workflows. Proteomics 12:587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sevenich L, Joyce JA (2014) Pericellular proteolysis in cancer. Genes Dev 28:2331–2347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Fischer A (1946) Mechanism of the proteolytic activity of malignant tissue cells. Nature 157:442

    Article  CAS  PubMed  Google Scholar 

  12. de Duve C, Pressman BC, Gianetto R et al (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 60:604–617

    Article  PubMed Central  Google Scholar 

  13. Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120:3421–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brömme D, Wilson S (2011) Role of cysteine cathepsins in extracellular proteolysis. In: Extracellular matrix degradation. Springer, Berlin, pp 23–51

    Google Scholar 

  15. Lalmanach G, Saidi A, Marchand-Adam S et al (2015) Cysteine cathepsins and cystatins: from ancillary tasks to prominent status in lung diseases. Biol Chem 396:111–130

    Article  CAS  PubMed  Google Scholar 

  16. Turk V, Stoka V, Vasiljeva O et al (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824:68–88

    Article  CAS  PubMed  Google Scholar 

  17. Lecaille F, Kaleta J, Bromme D (2002) Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 102:4459–4488

    Article  CAS  PubMed  Google Scholar 

  18. Verma S, Dixit R, Pandey KC (2016) Cysteine proteases: modes of activation and future prospects as pharmacological targets. Front Pharmacol 7:107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Löser R, Pietzsch J (2015) Cysteine cathepsins: their role in tumor progression and recent trends in the development of imaging probes. Front Chem 3:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162

    Article  CAS  PubMed  Google Scholar 

  21. Fonovic M, Turk B (2014) Cysteine cathepsins and extracellular matrix degradation. Biochim Biophys Acta 1840:2560–2570

    Article  CAS  PubMed  Google Scholar 

  22. Stoka V, Turk B, Turk V (2005) Lysosomal cysteine proteases: structural features and their role in apoptosis. IUBMB Life 57:347–353

    Article  CAS  PubMed  Google Scholar 

  23. Sivaraman J, Nagler DK, Zhang R et al (2000) Crystal structure of human procathepsin X: a cysteine protease with the proregion covalently linked to the active site cysteine. J Mol Biol 295:939–951

    Article  CAS  PubMed  Google Scholar 

  24. Musil D, Zucic D, Turk D et al (1991) The refined 2.15 a X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J 10:2321–2330

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Renko M, Požgan U, Majera D et al (2010) Stefin a displaces the occluding loop of cathepsin B only by as much as required to bind to the active site cleft. FEBS J 277:4338–4345

    Article  CAS  PubMed  Google Scholar 

  26. Turk D, Janjic V, Stern I et al (2001) Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. EMBO J 20:6570–6582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guncar G, Podobnik M, Pungercar J et al (1998) Crystal structure of porcine cathepsin H determined at 2.1 a resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure 6:51–61

    Article  CAS  PubMed  Google Scholar 

  28. Turk D, Turk B, Turk V (2003) Papain-like lysosomal cysteine proteases and their inhibitors: drug discovery targets? In: Biochemical Society symposia. Portland Press Limited, London, pp 15–30

    Google Scholar 

  29. Rawlings ND, Barrett AJ, Bateman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40:343–350

    Article  CAS  Google Scholar 

  30. Fonović, M.Turk, B. (2014) Cysteine cathepsins and extracellular matrix degradation. Biochimica et Biophysica Acta (BBA)-general subjects 1840:2560-2570.

    Google Scholar 

  31. Karrer KM, Peiffer SL, DiTomas ME (1993) Two distinct gene subfamilies within the family of cysteine protease genes. Proc Natl Acad Sci 90:3063–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wex T, Wex H, Brömme D (1999) The human Cathepsin F Gene a fusion product between an ancestral Cathepsin and Cystatin Gene. Biol Chem 380:1439–1442

    Article  CAS  PubMed  Google Scholar 

  33. Ishidoh K, Kominami E (2002) Processing and activation of lysosomal proteinases. Biol Chem 383:1827–1831

    Article  CAS  PubMed  Google Scholar 

  34. Dahl SW, Halkier T, Lauritzen C et al (2001) Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemistry 40:1671–1678

    Article  CAS  PubMed  Google Scholar 

  35. Vasiljeva O, Dolinar M, Pungerčar JR et al (2005) Recombinant human procathepsin S is capable of autocatalytic processing at neutral pH in the presence of glycosaminoglycans. FEBS Lett 579:1285–1290

    Article  CAS  PubMed  Google Scholar 

  36. Caglic D, Pungercar JR, Pejler G et al (2007) Glycosaminoglycans facilitate procathepsin B activation through disruption of propeptide-mature enzyme interactions. J Biol Chem 282:33076–33085

    Article  CAS  PubMed  Google Scholar 

  37. Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by ca(2+)-regulated exocytosis of lysosomes. Cell 106:157–169

    Article  CAS  PubMed  Google Scholar 

  38. Linke M, Herzog V, Brix K (2002) Trafficking of lysosomal cathepsin B-green fluorescent protein to the surface of thyroid epithelial cells involves the endosomal/lysosomal compartment. J Cell Sci 115:4877–4889

    Article  CAS  PubMed  Google Scholar 

  39. Guinec N, Dalet-Fumeron V, Pagano M (1993) “In vitro” study of basement membrane degradation by the cysteine proteinases, cathepsins B, B-like and L. digestion of collagen IV, laminin, fibronectin, and release of gelatinase activities from basement membrane fibronectin. Biol Chem Hoppe Seyler 374:1135–1146

    Article  CAS  PubMed  Google Scholar 

  40. Brix K, Herzog V (1994) Extrathyroidal release of thyroid hormones from thyroglobulin by J774 mouse macrophages. J Clin Invest 93:1388–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arkona C, Wiederanders B (1996) Expression, subcellular distribution and plasma membrane binding of cathepsin B and gelatinases in bone metastatic tissue. Biol Chem 377:695–702

    CAS  PubMed  Google Scholar 

  42. Mai J, Finley RL Jr, Waisman DM et al (2000) Human procathepsin B interacts with the annexin II tetramer on the surface of tumor cells. J Biol Chem 275:12806–12812

    Article  CAS  PubMed  Google Scholar 

  43. Cavallo-Medved D, Sloane BF (2003) Cell-surface cathepsin B: understanding its functional significance. Curr Top Dev Biol 54:313–341

    Article  CAS  PubMed  Google Scholar 

  44. Buth H, Wolters B, Hartwig B et al (2004) HaCaT keratinocytes secrete lysosomal cysteine proteinases during migration. Eur J Cell Biol 83:781–795

    Article  PubMed  Google Scholar 

  45. Abudula A, Rommerskirch W, Weber E et al (2001) Splice variants of human cathepsin L mRNA show different expression rates. Biol Chem 382:1583–1591

    Article  CAS  PubMed  Google Scholar 

  46. Mehtani S, Gong Q, Panella J et al (1998) In vivo expression of an alternatively spliced human tumor message that encodes a truncated form of cathepsin B. Subcellular distribution of the truncated enzyme in COS cells J Biol Chem 273:13236–13244

    CAS  PubMed  Google Scholar 

  47. Drake FH, Dodds RA, James IE et al (1996) Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem 271:12511–12516

    Article  CAS  PubMed  Google Scholar 

  48. Brown J, Matutes E, Singleton A et al (1998) Lymphopain, a cytotoxic T and natural killer cell-associated cysteine proteinase. Leukemia 12:1771–1781

    Article  CAS  PubMed  Google Scholar 

  49. Shi GP, Webb AC, Foster KE et al (1994) Human cathepsin S: chromosomal localization, gene structure, and tissue distribution. J Biol Chem 269:11530–11536

    CAS  PubMed  Google Scholar 

  50. Bromme D, Li Z, Barnes M et al (1999) Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry 38:2377–2385

    Article  CAS  PubMed  Google Scholar 

  51. Velasco G, Ferrando AA, Puente XS et al (1994) Human cathepsin O. Molecular cloning from a breast carcinoma, production of the active enzyme in Escherichia coli, and expression analysis in human tissues. J Biol Chem 269:27136–27142

    CAS  PubMed  Google Scholar 

  52. Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6:764–775

    Article  CAS  PubMed  Google Scholar 

  53. Bakhshi R, Goel A, Seth P et al (2001) Cloning and characterization of human cathepsin L promoter. Gene 275:93–101

    Article  CAS  PubMed  Google Scholar 

  54. Qian F, Frankfater A, Chan SJ et al (1991) The structure of the mouse cathepsin B gene and its putative promoter. DNA Cell Biol 10:159–168

    Article  CAS  PubMed  Google Scholar 

  55. Jean D, Guillaume N, Frade R (2002) Characterization of human cathepsin L promoter and identification of binding sites for NF-Y, Sp1 and Sp3 that are essential for its activity. Biochem J 361:173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sitabkhan Y, Frankfater A (2007) Differences in the expression of cathepsin B in B16 melanoma metastatic variants depend on transcription factor Sp1. DNA Cell Biol 26:673–682

    Article  CAS  PubMed  Google Scholar 

  57. Berquin IM, Sloane BF (1996) Cathepsin B expression in human tumors. In: Suzuki K, Bond JS (eds) Intracellular protein catabolis. Springer US, Berlin, pp 281–294

    Google Scholar 

  58. Jean D, Rousselet N, Frade R (2005) Expression of cathepsin L in human tumor cells is under the control of distinct regulatory mechanisms. Oncogene 25:1474–1484

    Article  CAS  Google Scholar 

  59. Asanuma K, Shirato I, Ishidoh K et al (2002) Selective modulation of the secretion of proteinases and their inhibitors by growth factors in cultured differentiated podocytes. Kidney Int 62:822–831

    Article  CAS  PubMed  Google Scholar 

  60. Keerthivasan S, Keerthivasan G, Mittal S et al (2007) Transcriptional upregulation of human cathepsin L by VEGF in glioblastoma cells. Gene 399:129–136

    Article  CAS  PubMed  Google Scholar 

  61. Gerber A, Welte T, Ansorge S et al (2002) Expression of cathepsins B and L in human lung epithelial cells is regulated by cytokines. In: Cellular peptidases in immune functions and diseases, vol 2. Springer, New York, pp 287–292

    Google Scholar 

  62. Guha S, Padh H (2008) Cathepsins: fundamental effectors of endolysosomal proteolysis. Indian J Biochem Biophys 45:75–90

    CAS  PubMed  Google Scholar 

  63. Samaiya M, Bakhshi S, Shukla AA et al (2011) Epigenetic regulation of cathepsin L expression in chronic myeloid leukaemia. J Cell Mol Med 15:2189–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hook G, Jacobsen JS, Grabstein K et al (2015) Cathepsin B is a new drug target for traumatic brain injury therapeutics: evidence for E64d as a promising lead drug candidate. Front Neurol 6:178

    Article  PubMed  PubMed Central  Google Scholar 

  65. Arora S, Chauhan SS (2002) Identification and characterization of a novel human cathepsin L splice variant. Gene 293:123–131

    Article  CAS  PubMed  Google Scholar 

  66. Seth P, Mahajan VS, Chauhan SS (2003) Transcription of human cathepsin L mRNA species hCATL B from a novel alternative promoter in the first intron of its gene. Gene 321:83–91

    Article  CAS  PubMed  Google Scholar 

  67. Gong Q, Chan SJ, BAJKOWSKI AS et al (1993) Characterization of the cathepsin B gene and multiple mRNAs in human tissues: evidence for alternative splicing of cathepsin B pre-mRNA. DNA Cell Biol 12:299–309

    Article  CAS  PubMed  Google Scholar 

  68. CANDANHIZEL MF, CURE H, PEZET D et al (1998) Evaluation of the 51 spliced form of human cathepsin B mRNA in colorectal mucosa and tumors. Oncol Rep 5:31–34

    Google Scholar 

  69. Jean D, Rousselet N, Frade R (2008) Cathepsin L expression is up-regulated by hypoxia in human melanoma cells: role of its 5′-untranslated region. Biochem J 413:125–134

    Article  CAS  PubMed  Google Scholar 

  70. Mittal S, Mir RA, Chauhan SS (2011) Post-transcriptional regulation of human cathepsin L expression. Biol Chem 392:405–413

    Article  CAS  PubMed  Google Scholar 

  71. Tholen M, Wolanski J, Stolze B et al (2015) Stress-resistant translation of cathepsin L mRNA in breast cancer progression. J Biol Chem 290:15758–15769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nägler DK, Ménard R (1998) Human cathepsin X: a novel cysteine protease of the papain family with a very short proregion and unique insertions. FEBS Lett 434:135–139

    Article  PubMed  Google Scholar 

  73. Pungercar JR, Caglic D, Sajid M et al (2009) Autocatalytic processing of procathepsin B is triggered by proenzyme activity. FEBS J 276:660–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hsing LC, Rudensky AY (2005) The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol Rev 207:229–241

    Article  CAS  PubMed  Google Scholar 

  75. Jordans S, Jenko-Kokalj S, Kühl NM et al (2009) Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC Biochem 10:1

    Article  CAS  Google Scholar 

  76. Turk B, Turk D, Turk V (2000) Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 1477:98–111

    Article  CAS  PubMed  Google Scholar 

  77. Turk V, Stoka V, Turk D (2008) Cystatins: biochemical and structural properties, and medical relevance. Front Biosci 13:5406–5420

    Article  CAS  PubMed  Google Scholar 

  78. Rzychon M, Chmiel D, Stec-Niemczyk J (2004) Modes of inhibition of cysteine proteases. Acta Biochim Pol 51:861–873

    CAS  PubMed  Google Scholar 

  79. Turk B, Turk D, Salvesen GS (2002) Regulating cysteine protease activity: essential role of protease inhibitors as guardians and regulators. Curr Pharm Des 8:1623–1637

    Article  CAS  PubMed  Google Scholar 

  80. Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27:6434–6451

    Article  CAS  PubMed  Google Scholar 

  81. Wallin H, Bjarnadottir M, Vogel LK et al (2010) Cystatins–extra-and intracellular cysteine protease inhibitors: high-level secretion and uptake of cystatin C in human neuroblastoma cells. Biochimie 92:1625–1634

    Article  CAS  PubMed  Google Scholar 

  82. Matthews SP, McMillan SJ, Colbert JD et al (2016) Cystatin F ensures eosinophil survival by regulating granule biogenesis. Immunity 44:795–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Grzonka Z, Jankowska E, Kasprzykowski F et al (2001) Structural studies of cysteine proteases and their inhibitors. Acta Biochim Pol 48:1–20

    CAS  PubMed  Google Scholar 

  84. Lu P, Takai K, Weaver VM et al (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:a005058

    Article  PubMed  PubMed Central  Google Scholar 

  85. Obermajer N, Jevnikar Z, Doljak B et al (2008) Role of cysteine cathepsins in matrix degradation and cell signalling. Connect Tissue Res 49:193–196

    Article  CAS  PubMed  Google Scholar 

  86. Chung L, Dinakarpandian D, Yoshida N et al (2004) Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J 23:3020–3030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li Z, Kienetz M, Cherney MM et al (2008) The crystal and molecular structures of a cathepsin K: chondroitin sulfate complex. J Mol Biol 383:78–91

    Article  CAS  PubMed  Google Scholar 

  88. Choe Y, Leonetti F, Greenbaum DC et al (2006) Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 281:12824–12832

    Article  CAS  PubMed  Google Scholar 

  89. Lecaille F, Chowdhury S, Purisima E et al (2007) The S2 subsites of cathepsins K and L and their contribution to collagen degradation. Protein Sci 16:662–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lotinun S, Kiviranta R, Matsubara T et al (2013) Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Invest 123:666–681

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Gowen M, Lazner F, Dodds R et al (1999) Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 14:1654–1663

    Article  CAS  PubMed  Google Scholar 

  92. Huber L, Distler O, Tarner I et al (2006) Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology 45:669–675

    Article  CAS  PubMed  Google Scholar 

  93. Schurigt U (2013) Role of cysteine cathepsins in joint inflammation and destruction in human rheumatoid arthritis and associated animal models. INTECH Open Access Publisher, Rijeka

    Book  Google Scholar 

  94. Novinec M, Grass RN, Stark WJ et al (2007) Interaction between human Cathepsins K, L, and S and Elastins MECHANISM OF ELASTINOLYSIS AND INHIBITION BY MACROMOLECULAR INHIBITORS. J Biol Chem 282:7893–7902

    Article  CAS  PubMed  Google Scholar 

  95. Li Z, Yasuda Y, Li W et al (2004) Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J Biol Chem 279:5470–5479

    Article  CAS  PubMed  Google Scholar 

  96. Sage J, Mallevre F, Barbarin-Costes F et al (2013) Binding of chondroitin 4-sulfate to cathepsin S regulates its enzymatic activity. Biochemistry 52:6487–6498

    Article  CAS  PubMed  Google Scholar 

  97. Yasuda Y, Li Z, Greenbaum D et al (2004) Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages. J Biol Chem 279:36761–36770

    Article  CAS  PubMed  Google Scholar 

  98. Bastow ER, Last K, Golub S et al (2012) Evidence for lysosomal exocytosis and release of aggrecan-degrading hydrolases from hypertrophic chondrocytes, in vitro and in vivo. Biol Open 1:318–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cailhier J-F, Sirois I, Laplante P et al (2008) Caspase-3 activation triggers extracellular Cathepsin L release and Endorepellin proteolysis. J Biol Chem 283:27220–27229

    Article  CAS  PubMed  Google Scholar 

  100. Saini MG, Bix GJ (2012) Oxygen-glucose deprivation (OGD) and interleukin-1 (IL-1) differentially modulate Cathepsin B/L mediated generation of Neuroprotective Perlecan LG3 by neurons. Brain Res 1438:65–74

    Article  CAS  PubMed  Google Scholar 

  101. Sage J, Leblanc-Noblesse E, Nizard C et al (2012) Cleavage of Nidogen-1 by Cathepsin S impairs its binding to basement membrane partners. PLoS One 7:e43494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Arampatzidou M, Schütte A, Hansson GC et al (2012) Effects of cathepsin K deficiency on intercellular junction proteins, luminal mucus layers, and extracellular matrix constituents in the mouse colon. Biol Chem 393:1391–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gocheva V, Zeng W, Ke D et al (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20:543–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Galluzzi L, Vitale I, Abrams JM et al (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 19:107–120

    Article  CAS  PubMed  Google Scholar 

  105. Saeed WK, Jun DW (2014) Necroptosis: an emerging type of cell death in liver diseases. World J Gastroenterol 20:12526–12532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kroemer G, Jäättelä M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886–897

    Article  CAS  PubMed  Google Scholar 

  107. Kirkegaard T, Jäättelä M (2009) Lysosomal involvement in cell death and cancer. Biochimica et Biophysica Acta (BBA)-molecular. Cell Res 1793:746–754

    CAS  Google Scholar 

  108. Repnik U, Hafner Cesen M, Turk B (2014) Lysosomal membrane permeabilization in cell death: concepts and challenges. Mitochondrion 19(Pt A):49–57

    Google Scholar 

  109. Rodriguez-Muela N, Hernandez-Pinto AM, Serrano-Puebla A et al (2015) Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa. Cell Death Differ 22:476–487

    Article  CAS  PubMed  Google Scholar 

  110. Bivik CA, Larsson PK, Kågedal KM et al (2006) UVA/B-induced apoptosis in human melanocytes involves translocation of cathepsins and Bcl-2 family members. J Investig Dermatol 126:1119–1127

    Article  CAS  PubMed  Google Scholar 

  111. Appelqvist H, Waster P, Kagedal K et al (2013) The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol 5:214–226

    Article  CAS  PubMed  Google Scholar 

  112. Chwieralski C, Welte T, Bühling F (2006) Cathepsin-regulated apoptosis. Apoptosis 11:143–149

    Article  CAS  PubMed  Google Scholar 

  113. Repnik U, Cesen MH, Turk B (2013) The endolysosomal system in cell death and survival. Cold Spring Harb Perspect Biol 5:a008755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Guicciardi ME, Miyoshi H, Bronk SF et al (2001) Cathepsin B knockout mice are resistant to tumor necrosis factor-alpha-mediated hepatocyte apoptosis and liver injury: implications for therapeutic applications. Am J Pathol 159:2045–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Werneburg NW, Bronk SF, Guicciardi ME et al (2012) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein-induced lysosomal translocation of proapoptotic effectors is mediated by phosphofurin acidic cluster sorting protein-2 (PACS-2). J Biol Chem 287:24427–24437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Werneburg NW, Guicciardi ME, Bronk SF et al (2002) Tumor necrosis factor-alpha-associated lysosomal permeabilization is cathepsin B dependent. Am J Physiol Gastrointest Liver Physiol 283:G947–G956

    Article  CAS  PubMed  Google Scholar 

  117. Werneburg NW, Guicciardi ME, Bronk SF et al (2007) Tumor necrosis factor-related apoptosis-inducing ligand activates a lysosomal pathway of apoptosis that is regulated by Bcl-2 proteins. J Biol Chem 282:28960–28970

    Article  CAS  PubMed  Google Scholar 

  118. Canbay A, Guicciardi ME, Higuchi H et al (2003) Cathepsin B inactivation attenuates hepatic injury and fibrosis during cholestasis. J Clin Invest 112:152–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Baskin-Bey ES, Canbay A, Bronk SF et al (2005) Cathepsin B inactivation attenuates hepatocyte apoptosis and liver damage in steatotic livers after cold ischemia-warm reperfusion injury. Am J Physiol Gastrointest Liver Physiol 288:G396–G402

    Article  CAS  PubMed  Google Scholar 

  120. Feldstein AE, Werneburg NW, Canbay A et al (2004) Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 40:185–194

    Article  CAS  PubMed  Google Scholar 

  121. Jones B, Roberts PJ, Faubion WA et al (1998) Cystatin a expression reduces bile salt-induced apoptosis in a rat hepatoma cell line. Am J Phys 275:G723–G730

    CAS  Google Scholar 

  122. Kirkegaard T, Jaattela M (2009) Lysosomal involvement in cell death and cancer. Biochim Biophys Acta 1793:746–754

    Article  CAS  PubMed  Google Scholar 

  123. Sendler M, Maertin S, John D et al (2016) Cathepsin-B activity initiates apoptosis via digestive protease activation in pancreatic acinar cells and experimental pancreatitis. J Biol Chem 291(28):14717–14731

    Google Scholar 

  124. Almaguel FG, Liu J-W, Pacheco FJ et al (2010) Lipotoxicity mediated cell dysfunction and death involves Lysosomal membrane Permeabilization and Cathepsin L activity. Brain Res 1318C:133–143

    Article  PubMed Central  CAS  Google Scholar 

  125. Zhang H, Zhang L, Wei L et al (2016) Knockdown of cathepsin L sensitizes ovarian cancer cells to chemotherapy. Oncol Lett 11:4235–4239

    PubMed  PubMed Central  Google Scholar 

  126. Cui F, Wang W, Wu D et al (2016) Overexpression of Cathepsin L is associated with gefitinib resistance in non-small cell lung cancer. Clin Transl Oncol 18:722–727

    Article  CAS  PubMed  Google Scholar 

  127. Pacheco FJ, Servin J, Dang D et al (2005) Involvement of lysosomal cathepsins in the cleavage of DNA topoisomerase I during necrotic cell death. Arthritis Rheum 52:2133–2145

    Article  CAS  PubMed  Google Scholar 

  128. Hentze H, Lin XY, Choi MS et al (2003) Critical role for cathepsin B in mediating caspase-1-dependent interleukin-18 maturation and caspase-1-independent necrosis triggered by the microbial toxin nigericin. Cell Death Differ 10:956–968

    Article  CAS  PubMed  Google Scholar 

  129. Jacobson LS, Lima H, Goldberg MF et al (2013) Cathepsin-mediated necrosis controls the adaptive immune response by Th2 (T helper type 2)-associated adjuvants. J Biol Chem 288:7481–7491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Honey K, Rudensky AY (2003) Lysosomal cysteine proteases regulate antigen presentation. Nat Rev Immunol 3:472–482

    Article  CAS  PubMed  Google Scholar 

  131. Zavasnik-Bergant T, Turk B (2006) Cysteine cathepsins in the immune response. Tissue Antigens 67:349–355

    Article  CAS  PubMed  Google Scholar 

  132. Honey K, Nakagawa T, Peters C et al (2002) Cathepsin L regulates CD4+ T cell selection independently of its effect on invariant chain: a role in the generation of positively selecting peptide ligands. J Exp Med 195:1349–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Riese RJ, Chapman HA (2000) Cathepsins and compartmentalization in antigen presentation. Curr Opin Immunol 12:107–113

    Article  CAS  PubMed  Google Scholar 

  134. Olson OC, Joyce JA (2015) Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer 15:712–729

    Article  CAS  PubMed  Google Scholar 

  135. Artal-Sanz M, Tavernarakis N (2005) Proteolytic mechanisms in necrotic cell death and neurodegeneration. FEBS Lett 579:3287–3296

    Article  CAS  PubMed  Google Scholar 

  136. Cheng XW, Shi GP, Kuzuya M et al (2012) Role for cysteine protease cathepsins in heart disease: focus on biology and mechanisms with clinical implication. Circulation 125:1551–1562

    Article  PubMed  Google Scholar 

  137. Lafarge JC, Naour N, Clement K et al (2010) Cathepsins and cystatin C in atherosclerosis and obesity. Biochimie 92:1580–1586

    Article  CAS  PubMed  Google Scholar 

  138. Manchanda M, Roeb E, Roderfield M, et al (2015) P0109: elevation of cathepsin L and B expression in liver fibrosis: a study in mice models and patients. J Hepatol 62:S341–S342

    Google Scholar 

  139. Leto G, Tumminello FM, Pizzolanti G et al (1997) Lysosomal cathepsins B and L and Stefin a blood levels in patients with hepatocellular carcinoma and/or liver cirrhosis: potential clinical implications. Oncology 54:79–83

    Article  CAS  PubMed  Google Scholar 

  140. Conus S, Simon H-U (2010) Cathepsins and their involvement in immune responses. Swiss Med Wkly 140:w13042

    PubMed  Google Scholar 

  141. McKerrow JH, Caffrey C, Kelly B et al (2006) Proteases in parasitic diseases. Annu Rev Pathol Mech Dis 1:497–536

    Article  CAS  Google Scholar 

  142. Simmons G, Gosalia DN, Rennekamp AJ et al (2005) Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci U S A 102:11876–11881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jedeszko C, Sloane BF (2004) Cysteine cathepsins in human cancer. Biol Chem 385:1017–1027

    Article  CAS  PubMed  Google Scholar 

  144. Thomssen C, Schmitt M, Goretzki L et al (1995) Prognostic value of the cysteine proteases cathepsins B and cathepsin L in human breast cancer. American Association for Cancer Research 1:741–746

    CAS  Google Scholar 

  145. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826

    Article  CAS  PubMed  Google Scholar 

  146. Lah TT, Čerc̆ek M, Blejec A et al (2000) Cathepsin B, a prognostic indicator in lymph node-negative breast carcinoma patients: comparison with cathepsin D, cathepsin L, and other clinical indicators. Clin Cancer Res 6:578–584

    CAS  PubMed  Google Scholar 

  147. Paik S, Tang G, Shak S et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor–positive breast cancer. J Clin Oncol 24:3726–3734

    Article  CAS  PubMed  Google Scholar 

  148. Berdowska I (2004) Cysteine proteases as disease markers. Clin Chim Acta 342:41–69

    Article  CAS  PubMed  Google Scholar 

  149. Zhang W, Wang S, Wang Q et al (2014) Overexpression of cysteine cathepsin L is a marker of invasion and metastasis in ovarian cancer. Oncol Rep 31:1334–1342

    Article  CAS  PubMed  Google Scholar 

  150. Scorilas A, Fotiou S, Tsiambas E et al (2002) Determination of cathepsin B expression may offer additional prognostic information for ovarian cancer patients. Biol Chem 383:1297–1303

    Article  CAS  PubMed  Google Scholar 

  151. Strojnik T, Kos J, Lah TT (2001) Cathepsins B and L are markers for clinically invasive types of meningiomas. Neurosurgery 48:598–605

    Article  CAS  PubMed  Google Scholar 

  152. Nakada M, Nakada S, Demuth T et al (2007) Molecular targets of glioma invasion. Cell Mol Life Sci 64:458–478

    Article  CAS  PubMed  Google Scholar 

  153. Jain M, Bakhshi S, Shukla AA et al (2010) Cathepsins B and L in peripheral blood mononuclear cells of pediatric acute myeloid leukemia: potential poor prognostic markers. Ann Hematol 89:1223–1232

    Article  CAS  PubMed  Google Scholar 

  154. Pandey G, Bakhshi S, Singh R et al (2014) Clinical significance of cathepsin L and B expression in pediatric acute myeloid leukemia. Cancer Res 74:1868–1868

    Article  Google Scholar 

  155. Herszenyi L, Farinati F, Cardin R et al (2008) Tumor marker utility and prognostic relevance of cathepsin B, cathepsin L, urokinase-type plasminogen activator, plasminogen activator inhibitor type-1, CEA and CA 19-9 in colorectal cancer. BMC Cancer 8:194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Fujise N, Nanashim A, Taniguchi Y et al (2000) Prognostic impact of cathepsin B and matrix metalloproteinase-9 in pulmonary adenocarcinomas by immunohistochemical study. Lung Cancer 27:19–26

    Article  CAS  PubMed  Google Scholar 

  157. Werle B, Kraft C, Lah TT et al (2000) Cathepsin B in infiltrated lymph nodes is of prognostic significance for patients with nonsmall cell lung carcinoma. Cancer 89:2282–2291

    Article  CAS  PubMed  Google Scholar 

  158. Yan X, Takahara M, Xie L et al (2011) Stromal expression of cathepsin K in squamous cell carcinoma. J Eur Acad Dermatol Venereol 25:362–365

    Article  CAS  PubMed  Google Scholar 

  159. MEHRA S, KUMAR M, PANWAR R et al (2016) Abstract 3986: diagnostic significance of cathepsin L and cathepsin B expression in human gallbladder cancer - a pilot study. Cancer Res 76:3986–3986

    Article  Google Scholar 

  160. Tan GJ, Peng ZK, Lu JP et al (2013) Cathepsins mediate tumor metastasis. World J Biol Chem 4:91–101

    PubMed  PubMed Central  Google Scholar 

  161. Fan Q, Wang X, Zhang H et al (2012) Silencing cathepsin S gene expression inhibits growth, invasion and angiogenesis of human hepatocellular carcinoma in vitro. Biochem Biophys Res Commun 425:703–710

    Article  CAS  PubMed  Google Scholar 

  162. Small DM, Burden RE, Jaworski J et al (2013) Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization. Int J Cancer 133:2102–2112

    Article  CAS  PubMed  Google Scholar 

  163. Sinha AA, Gleason DF, Staley NA et al (1995) Cathepsin B in angiogenesis of human prostate: an immunohistochemical and immunoelectron microscopic analysis. Anat Rec 241:353–362

    Article  CAS  PubMed  Google Scholar 

  164. Mohanam S, Jasti SL, Kondraganti SR et al (2001) Down-regulation of cathepsin B expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene 20:3665–3673

    Article  CAS  PubMed  Google Scholar 

  165. Yanamandra N, Gumidyala KV, Waldron KG et al (2004) Blockade of cathepsin B expression in human glioblastoma cells is associated with suppression of angiogenesis. Oncogene 23:2224–2230

    Article  CAS  PubMed  Google Scholar 

  166. Gocheva V, Chen X, Peters C et al (2010) Deletion of cathepsin H perturbs angiogenic switching, vascularization and growth of tumors in a mouse model of pancreatic islet cell cancer. Biol Chem 391:937–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wang B, Sun J, Kitamoto S et al (2006) Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J Biol Chem 281:6020–6029

    Article  CAS  PubMed  Google Scholar 

  168. Veillard F, Saidi A, Burden RE et al (2011) Cysteine cathepsins S and L modulate anti-angiogenic activities of human endostatin. J Biol Chem 286:37158–37167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kostoulas G, Lang A, Nagase H et al (1999) Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS Lett 455:286–290

    Article  CAS  PubMed  Google Scholar 

  170. Sobotic B, Vizovisek M, Vidmar R et al (2015) Proteomic identification of cysteine Cathepsin substrates shed from the surface of cancer cells. Mol Cell Proteomics 14:2213–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jevnikar Z, Rojnik M, Jamnik P et al (2013) Cathepsin H mediates the processing of Talin and regulates migration of prostate cancer cells. J Biol Chem 288:2201–2209

    Article  CAS  PubMed  Google Scholar 

  172. Pecar F, Kos U, J. (2015) Cathepsin X cleaves profilin 1 C-terminal Tyr139 and influences Clathrin-mediated endocytosis. PLoS One 10:e0137217

    Article  CAS  Google Scholar 

  173. Ren G, Tian Q, An Y et al (2012) Coronin 3 promotes gastric cancer metastasis via the up-regulation of MMP-9 and cathepsin K. Mol Cancer 11:67–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Le Gall C, Bonnelye E, Clezardin P (2008) Cathepsin K inhibitors as treatment of bone metastasis. Curr Opin Support Palliat Care 2:218–222

    Article  PubMed  Google Scholar 

  175. Victor BC, Anbalagan A, Mohamed MM et al (2011) Inhibition of cathepsin B activity attenuates extracellular matrix degradation and inflammatory breast cancer invasion. Breast Cancer Res 13:R115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Cavallo-Medved D, Mai J, Dosescu J et al (2005) Caveolin-1 mediates the expression and localization of cathepsin B, pro-urokinase plasminogen activator and their cell-surface receptors in human colorectal carcinoma cells. J Cell Sci 118:1493–1503

    Article  CAS  PubMed  Google Scholar 

  177. Zhang Q, Han M, Wang W et al (2015) Downregulation of cathepsin L suppresses cancer invasion and migration by inhibiting transforming growth factor beta mediated epithelial-mesenchymal transition. Oncol Rep 33:1851–1859

    Article  CAS  PubMed  Google Scholar 

  178. Yu S, Yu Y, Zhang W, et al (2016) FOXO3a promotes gastric cancer cell migration and invasion through the induction of cathepsin L. Oncotarget 7(23):34773–34784

    Google Scholar 

  179. Wang J, Chen L, Li Y et al (2011) Overexpression of Cathepsin Z contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma. PLoS One 6:e24967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lecaille F, Bromme D, Lalmanach G (2008) Biochemical properties and regulation of cathepsin K activity. Biochimie 90:208–226

    Article  CAS  PubMed  Google Scholar 

  181. Chapman HA, Riese RJ, Shi GP (1997) Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 59:63–88

    Article  CAS  PubMed  Google Scholar 

  182. Buhling F, Waldburg N, Reisenauer A et al (2004) Lysosomal cysteine proteases in the lung: role in protein processing and immunoregulation. Eur Respir J 23:620–628

    Article  CAS  PubMed  Google Scholar 

  183. Zhang D, Leung N, Weber E et al (2011) The effect of cathepsin K deficiency on airway development and TGF-beta1 degradation. Respir Res 12:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lecaille F, Lalmanach G, Andrault PM (2016) Antimicrobial proteins and peptides in human lung diseases: a friend and foe partnership with host proteases. Biochimie 122:151–168

    Article  CAS  PubMed  Google Scholar 

  185. Kasabova M, Joulin-Giet A, Lecaille F et al (2014) Regulation of TGF-β1-driven differentiation of human lung fibroblasts: EMERGING ROLES OF CATHEPSIN B AND CYSTATIN C. J Biol Chem 289:16239–16251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhang L, Fu XH, Yu Y et al (2015) Treatment with CA-074Me, a Cathepsin B inhibitor, reduces lung interstitial inflammation and fibrosis in a rat model of polymyositis. Lab Investig 95:65–77

    Article  PubMed  CAS  Google Scholar 

  187. Takeyabu K, Betsuyaku T, Nishimura M et al (1998) Cysteine proteinases and cystatin C in bronchoalveolar lavage fluid from subjects with subclinical emphysema. Eur Respir J 12:1033–1039

    Article  CAS  PubMed  Google Scholar 

  188. Williams AS, Eynott PR, Leung SY et al (2009) Role of cathepsin S in ozone-induced airway hyperresponsiveness and inflammation. Pulm Pharmacol Ther 22:27–32

    Article  CAS  PubMed  Google Scholar 

  189. Geraghty P, Rogan MP, Greene CM et al (2008) Alpha-1-antitrypsin aerosolised augmentation abrogates neutrophil elastase-induced expression of cathepsin B and matrix metalloprotease 2 in vivo and in vitro. Thorax 63:621–626

    Article  CAS  PubMed  Google Scholar 

  190. Martin SL, Moffitt KL, McDowell A et al (2010) Association of airway cathepsin B and S with inflammation in cystic fibrosis. Pediatr Pulmonol 45:860–868

    Article  CAS  PubMed  Google Scholar 

  191. Cimerman N, Brguljan PM, Krasovec M et al (2001) Circadian and concentration profile of cathepsin S in sera from healthy subjects and asthmatic patients. Pflugers Arch 442:R204–R206

    Article  CAS  PubMed  Google Scholar 

  192. Fajardo I, Svensson L, Bucht A et al (2004) Increased levels of hypoxia-sensitive proteins in allergic airway inflammation. Am J Respir Crit Care Med 170:477–484

    Article  PubMed  Google Scholar 

  193. Somoza JR, Palmer JT, Ho JD (2002) The crystal structure of human cathepsin F and its implications for the development of novel immunomodulators. J Mol Biol 322:559–568

    Article  CAS  PubMed  Google Scholar 

  194. Lutgens SP, Cleutjens KB, Daemen MJ et al (2007) Cathepsin cysteine proteases in cardiovascular disease. FASEB J 21:3029–3041

    Article  CAS  PubMed  Google Scholar 

  195. Blondelle J, Lange S, Greenberg BH et al (2015) Cathepsins in heart disease–chewing on the heartache? Am J Physiol Heart Circ Physiol 308:H974–H976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hua Y, Zhang Y, Dolence J et al (2013) Cathepsin K knockout mitigates high-fat diet-induced cardiac hypertrophy and contractile dysfunction. Diabetes 62:498–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Cheng XW, Murohara T, Kuzuya M et al (2008) Superoxide-dependent cathepsin activation is associated with hypertensive myocardial remodeling and represents a target for angiotensin II type 1 receptor blocker treatment. Am J Pathol 173:358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Stypmann J, Glaser K, Roth W et al (2002) Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L. Proc Natl Acad Sci U S A 99:6234–6239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Sun M, Ouzounian M, de Couto G et al (2013) Cathepsin-L ameliorates cardiac hypertrophy through activation of the autophagy–Lysosomal dependent protein processing pathways. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease 2:e000191

    Article  CAS  Google Scholar 

  200. Xie L, Terrand J, Xu B et al (2010) Cystatin C increases in cardiac injury: a role in extracellular matrix protein modulation. Cardiovasc Res 87:628–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Sehl PD, Tai JT, Hillan KJ et al (2000) Application of cDNA microarrays in determining molecular phenotype in cardiac growth, development, and response to injury. Circulation 101:1990–1999

    Article  CAS  PubMed  Google Scholar 

  202. Liu J, Sukhova GK, Yang JT et al (2006) Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis 184:302–311

    Article  CAS  PubMed  Google Scholar 

  203. Liu J, Sukhova GK, Sun JS et al (2004) Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol 24:1359–1366

    Article  CAS  PubMed  Google Scholar 

  204. Platt MO, Ankeny RF, Shi G-P et al (2007) Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. Am J Physiol Heart Circ Physiol 292:H1479–H1486

    Article  CAS  PubMed  Google Scholar 

  205. Sukhova GK, Shi GP, Simon DI et al (1998) Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Investig 102:576–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wilczynski C, Samarasinghe S, Emanuele M et al (2015) Cathepsins K and S: role in bone, adipocytes, and glucose regulation. Clinical Reviews in Bone and Mineral Metabolism 13:2–10

    Article  CAS  Google Scholar 

  207. Huang X, Vaag A, Carlsson E et al (2003) Impaired Cathepsin L Gene expression in skeletal muscle is associated with Type 2 diabetes. Diabetes 52:2411–2418

    Article  CAS  PubMed  Google Scholar 

  208. Maehr R, Mintern JD, Herman AE et al (2005) Cathepsin L is essential for onset of autoimmune diabetes in NOD mice. J Clin Invest 115:2934–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Hsing LC, Kirk EA, McMillen TS et al (2010) Roles for cathepsins S, L, and B in insulitis and diabetes in the NOD mouse. J Autoimmun 34:96–104

    Article  CAS  PubMed  Google Scholar 

  210. Yamada A, Ishimaru N, Arakaki R et al (2010) Cathepsin L inhibition prevents murine autoimmune diabetes via suppression of CD8(+) T cell activity. PLoS One 5:e12894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Yang M, Zhang Y, Pan J et al (2007) Cathepsin L activity controls adipogenesis and glucose tolerance. Nat Cell Biol 9:970–977

    CAS  PubMed  Google Scholar 

  212. Jung M, Lee J, Seo HY et al (2015) Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose. PLoS One 10:e0116972

    Article  PubMed  PubMed Central  Google Scholar 

  213. Li X, Wu K, Edman M et al (2010) Increased expression of cathepsins and obesity-induced proinflammatory cytokines in lacrimal glands of male NOD mouse. Invest Ophthalmol Vis Sci 51:5019–5029

    Article  PubMed  PubMed Central  Google Scholar 

  214. Chen RP, Ren A, Ye SD (2013) Correlation between serum cathepsin S and insulin resistance in type 2 diabetes. Exp Ther Med 6:1237–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Jobs E, Risérus U, Ingelsson E et al (2013) Serum Cathepsin S is associated with decreased insulin sensitivity and the development of type 2 diabetes in a community-based cohort of elderly men. Diabetes Care 36:163–165

    Article  PubMed  Google Scholar 

  216. Taleb S, Lacasa D, Bastard JP et al (2005) Cathepsin S, a novel biomarker of adiposity: relevance to atherogenesis. FASEB J 19:1540–1542

    CAS  PubMed  Google Scholar 

  217. Naour N, Rouault C, Fellahi S et al (2010) Cathepsins in human obesity: changes in energy balance predominantly affect cathepsin s in adipose tissue and in circulation. J Clin Endocrinol Metab 95:1861–1868

    Article  CAS  PubMed  Google Scholar 

  218. Lafarge JC, Pini M, Pelloux V et al (2014) Cathepsin S inhibition lowers blood glucose levels in mice. Diabetologia 57:1674–1683

    Article  CAS  PubMed  Google Scholar 

  219. Hua Y, Nair S (2015) Proteases in cardiometabolic diseases: pathophysiology, molecular mechanisms and clinical applications. Biochim Biophys Acta 1852:195–208

    Article  CAS  PubMed  Google Scholar 

  220. Chiellini C, Costa M, Novelli SE et al (2003) Identification of cathepsin K as a novel marker of adiposity in white adipose tissue. J Cell Physiol 195:309–321

    Article  CAS  PubMed  Google Scholar 

  221. Xiao Y, Junfeng H, Tianhong L et al (2006) Cathepsin K in adipocyte differentiation and its potential role in the pathogenesis of obesity. J Clin Endocrinol Metab 91:4520–4527

    Article  PubMed  CAS  Google Scholar 

  222. Yang M, Sun J, Zhang T et al (2008) Deficiency and inhibition of Cathepsin K reduce body weight gain and increase glucose metabolism in mice. Arterioscler Thromb Vasc Biol 28:2202–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Han J, Luo T, Gu Y et al (2009) Cathepsin K regulates adipocyte differentiation: possible involvement of type I collagen degradation. Endocr J 56:55–63

    Article  CAS  PubMed  Google Scholar 

  224. Friedrichs B, Tepel C, Reinheckel T et al (2003) Thyroid functions of mouse cathepsins B, K, and L. J Clin Investig 111:1733–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Halangk W, Lerch MM, Brandt-Nedelev B et al (2000) Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 106:773–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Pham CTN, Ley TJ (1999) Dipeptidyl peptidase I is required for the processing and activation of granzymes a and B in vivo. Proc Natl Acad Sci U S A 96:8627–8632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Tang C-H, Lee J-W, Galvez MG et al (2006) Murine Cathepsin F deficiency causes neuronal Lipofuscinosis and late-onset neurological disease. Mol Cell Biol 26:2309–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Bühling F, Kouadio M, Chwieralski CE et al (2011) Gene targeting of the cysteine peptidase Cathepsin H impairs lung surfactant in mice. PLoS One 6:e26247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. ROTH W, DEUSSING J, BOTCHKAREV VA et al (2000) Cathepsin L deficiency as molecular defect of furless: hyperproliferation of keratinocytes and perturbation of hair follicle cycling. FASEB J 14:2075–2086

    Article  CAS  PubMed  Google Scholar 

  230. Potts W, Bowyer J, Jones H et al (2004) Cathepsin L-deficient mice exhibit abnormal skin and bone development and show increased resistance to osteoporosis following ovariectomy. Int J Exp Pathol 85:85–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Ondr JK, Pham CTN (2004) Characterization of murine Cathepsin W and its role in cell-mediated cytotoxicity. J Biol Chem 279:27525–27533

    Article  CAS  PubMed  Google Scholar 

  232. Adenis A, Huet G, Zerimech F et al (1995) Cathepsin-B, Cathepsin-L, and Cathepsin-D activities in colorectal carcinomas - relationship with Clinicopathological parameters. Cancer Lett 96:267–275

    Article  CAS  PubMed  Google Scholar 

  233. Gormley JA, Hegarty SM, O’Grady A et al (2011) The role of Cathepsin S as a marker of prognosis and predictor of chemotherapy benefit in adjuvant CRC: a pilot study. Br J Cancer 105:1487–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Herszenyi L, Plebani M, Carraro P et al (1999) The role of cysteine and serine proteases in colorectal carcinoma. Cancer 86:1135–1142

    Article  CAS  PubMed  Google Scholar 

  235. Troy AM, Sheahan K, Mulcahy HE et al (2004) Expression of Cathepsin B and L antigen and activity is associated with early colorectal cancer progression. Eur J Cancer 40:1610–1616

    Article  CAS  PubMed  Google Scholar 

  236. Akkari L, Gocheva V, Kester JC et al (2014) Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix. Genes Dev 28:2134–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Husmann K, Muff R, Bolander ME et al (2008) Cathepsins and osteosarcoma: expression analysis identifies cathepsin K as an indicator of metastasis. Mol Carcinog 47:66–73

    Article  CAS  PubMed  Google Scholar 

  238. Liu JP, Guo Q, Chen BX et al (2006) Cathepsin B and its interacting proteins, bikunin and TSRC1, correlate with TNF-induced apoptosis of ovarian cancer cells OV-90. FEBS Lett 580:245–250

    Article  CAS  PubMed  Google Scholar 

  239. Lutgens E, Lutgens SP, Faber BC et al (2006) Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation 113:98–107

    Article  CAS  PubMed  Google Scholar 

  240. Lutgens SP, Kisters N, Lutgens E et al (2006) Gene profiling of cathepsin K deficiency in atherogenesis: profibrotic but lipogenic. J Pathol 210:334–343

    Article  CAS  PubMed  Google Scholar 

  241. Samokhin AO, Wong A, Saftig P et al (2008) Role of cathepsin K in structural changes in brachiocephalic artery during progression of atherosclerosis in apoE-deficient mice. Atherosclerosis 200:58–68

    Article  CAS  PubMed  Google Scholar 

  242. Guo J, Bot I, de Nooijer R et al (2009) Leucocyte cathepsin K affects atherosclerotic lesion composition and bone mineral density in low-density lipoprotein receptor deficient mice. Cardiovasc Res 81:278–285

    Article  CAS  PubMed  Google Scholar 

  243. Kitamoto S, Sukhova GK, Sun J et al (2007) Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptor-knockout mice. Circulation 115:2065–2075

    Article  CAS  PubMed  Google Scholar 

  244. Rodgers KJ, Watkins DJ, Miller AL et al (2006) Destabilizing role of cathepsin S in murine atherosclerotic plaques. Arterioscler Thromb Vasc Biol 26:851–856

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure of Potential Conflicts of Interest

The authors declared no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Singh Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Manchanda, M., Fatima, N., Chauhan, S.S. (2017). Physiological and Pathological Functions of Cysteine Cathepsins. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Physiology and Pathology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2513-6_11

Download citation

Publish with us

Policies and ethics