Skip to main content

Advertisement

Log in

Cells in cells: morphogenetic and metabolic strategies conditioning rice infection by the blast fungus Magnaporthe oryzae

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The rice blast fungus Magnaporthe oryzae is a global food security threat due to its destruction of cultivated rice. Of the world's rice harvest, 10–30 % is lost each year to this pathogen, and changing climates are likely to favor its spread into new areas. Insights into how the fungus might be contained could come from the wealth of molecular and cellular studies that have been undertaken in order to shed light on the biological underpinnings of blast disease, aspects of which we review herein. Infection begins when a three-celled spore lands on the surface of a leaf, germinates, and develops the specialized infection structure called the appressorium. The mature appressorium develops a high internal turgor that acts on a thin penetration peg, forcing it through the rice cuticle and into the underlying epidermal cells. Primary then invasive hyphae (IH) elaborate from the peg and grow asymptomatically from one living rice cell to another for the first few days of infection before host cells begin to die and characteristic necrotic lesions form on the surface of the leaf, from which spores are produced to continue the life cycle. To gain new insights into the biology of rice blast disease, we argue that, conceptually, the infection process can be viewed as two discrete phases occurring in markedly different environments and requiring distinct biochemical pathways and morphogenetic regulation: outside the host cell, where the appressorium develops in a nutrient-free environment, and inside the host cell, where filamentous growth occurs in a glucose-rich, nitrogen-poor environment, at least from the perspective of the fungus. Here, we review the physiological and metabolic changes that occur in M. oryzae as it transitions from the surface to the interior of the host, thus enabling us to draw lessons about the strategies that allow M. oryzae cells to thrive in rice cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IH:

Invasive hyphae

cAMP:

Cyclic adenosine monophosphate

cPKA:

Catalytic subunit of cAMP-dependent protein kinase A

MAPK:

Mitogen-activated protein kinase

CAT:

Carnitine acetyl transferase

hpi:

Hours post-inoculation

AA:

Allyl alcohol

CCR:

Carbon catabolite repression

References

  • Adachi K, Hamer JE (1998) Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell 10:1361–1373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhadauria V, Banniza S, Vandenberg A, Selvaraj G, Wei Y (2012) Peroxisomal alanine: glyoxylate aminotransferase AGT1 is indispensable for appressorium function of the rice blast pathogen. Magnaporthe oryzae PLOS One 7:e36266

    Article  CAS  Google Scholar 

  • Bhambra GK, Wang ZY, Soanes DM, Wakley GE, Talbot NJ (2006) Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea. Mol Microbiol 61:46–60

    Article  CAS  PubMed  Google Scholar 

  • Choi WB, Dean RA (1997) The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973–1983

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chumley FG, Valent B (1990) Genetic analysis of melanin-deficient, nonpathogenic mutants of Magnaporthe grisea. Molecular Plant Microbe Interactions 3:135–143

    Article  CAS  Google Scholar 

  • Dagdas YF, Yoshino K, Dagdas G, Ryder LS, Bielska E, Steinberg G, Talbot NJ (2012) Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 336:1590–1595

    Article  CAS  PubMed  Google Scholar 

  • Dean RA (1997) Signal pathways and appressorium morphogenesis. Annu Rev Phytopathol 35:211–234

    Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    Article  CAS  PubMed  Google Scholar 

  • de Jong JC, McCormack BJ, Smirnoff N, Talbot NJ (1997) Glycerol generates turgor in rice blast. Nature 389:244–245

    Article  Google Scholar 

  • DeZwaan TM, Carroll AM, Valent B, Sweigard JA (1999) Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11:2013–2030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dixon KP, Xu JR, Smirnoff N, Talbot NJ (1999) Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11:2045–2058

    Google Scholar 

  • Donofrio NM, Oh Y, Lundy R, Pan H, Brown DE, Jeong JS, Coughlan S, Mitchell TK, Dean RA (2006) Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol 43:605–617

    Article  CAS  PubMed  Google Scholar 

  • Egan MJ, Wang ZY, Jones MA, Smirnoff N, Talbot NJ (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci U S A 104:11772–11777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang EGC, Dean RA (2000) Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea. Mol Plant Microbe Interact 13:1214–1227

    Article  CAS  PubMed  Google Scholar 

  • Fernandez J, Wilson RA (2011) The sugar sensor, trehalose-6-phosphate synthase (Tps1), regulates primary and secondary metabolism during infection by the rice blast fungus: will Magnaporthe oryzae's “sweet tooth” become its “Achilles' heel”? Mycology 2:46–53

    Article  CAS  Google Scholar 

  • Fernandez J, Wilson RA (2012) Why no feeding frenzy? Mechanisms of nutrient acquisition and utilization during infection by the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe Interact 25:1286–1293

    Article  CAS  PubMed  Google Scholar 

  • Fernandez J, Wright JD, Hartline D, Quispe CF, Madayiputhiya N, Wilson RA (2012) Principles of carbon catabolite repression in the rice blast fungus: Tps1, Nmr1-3, and a MATE–Family Pump regulate glucose metabolism during Infection. PLoS Genet 8:e1002673

    Google Scholar 

  • Fernandez J, Yang KT, Cornwell KM, Wright JD, Wilson RA (2013) Growth in rice cells requires de novo purine biosynthesis by the blast fungus Magnaporthe oryzae. Sci Rep 3:2398

    Article  PubMed Central  PubMed  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  CAS  PubMed  Google Scholar 

  • Foster AJ, Jenkinson JM, Talbot NJ (2003) Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J 22:225–235

    Article  CAS  PubMed  Google Scholar 

  • Franck WL, Gokce E, Oh Y, Muddiman DC, Dean RA (2013) Temporal analysis of the Magnaporthe oryzae proteome during conidial germination and cAMP-mediated appressorium formation. Mol Cell Proteomics 12:2249–65

    Article  CAS  PubMed  Google Scholar 

  • Froeliger EH, Carpenter BE (1996) NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Mol Gen Genet 251:647–656

    CAS  PubMed  Google Scholar 

  • Ghatak A, Willocquet L, Savary S, Kumar J (2013) Variability in aggressiveness of rice blast (Magnaporthe oryzae) isolates originating from rice leaves and necks: a case of pathogen specialization? PLoS One 8:e66180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giraldo MC, Dagdas YF, Gupta YK, Mentlak TA, Yi M, Martinez-Rocha AL, Saitoh H, Terauchi R, Talbot NJ, Valent B (2013) Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun 4:1996

    Article  PubMed Central  PubMed  Google Scholar 

  • Goh J, Jeon J, Kim KS, Park J, Park SY et al (2011) The PEX7-mediated peroxisomal import system is required for fungal development and pathogenicity in Magnaporthe oryzae. PLoS One 6:e28220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamer JE, Howard RJ, Chumley FG, Valent B (1988) A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239:288–290

    Article  CAS  PubMed  Google Scholar 

  • Jelitto TC, Page HA, Read ND (1994) Role of external signals in regulating the pre-penetration phase of infection by the rice blast fungus Magnaporthe grisea. Planta 194:471–477

    Article  CAS  Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014

    Article  CAS  PubMed  Google Scholar 

  • Kankanala P, Czymmek K, Valent B (2007) Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:706–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kershaw MJ, Talbot NJ (2009) Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc Natl Acad Sci U S A 106:15967–15972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park SY et al (2010) Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22:1388–1403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee YH, Dean RA (1993) cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell 5:693–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li G, Zhou X, Xu JR (2012) Genetic control of infection-related development in Magnaporthe oryzae. Curr Opin Microbiol 15:678–684

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Dean RA (1997) G protein α-subunit genes control growth, development and pathogenicity of Magnaporthe grisea. Mol Plant Microbe Interact 10:1075–1086

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Suresh A, Willard FS, Siderovski DP, Lu S et al (2007) Rgs1 regulates multiple G alpha subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. Embo Journal 26:690–700

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Zhou X, Li G, Li L, Kong L et al (2011) Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog 7(1):e1001261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma BPHJ, Talbot NJ (2012) Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24:322–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchell TK, Dean RA (1995) The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell 7:1869–1878

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B (2009) Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21:1273–1290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishimura M, Park G, Xu JR (2003) The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol Microbiol 50:231–243

    Article  CAS  PubMed  Google Scholar 

  • Park C-H, Chen S, Shirsekar G, Zhou B, Khang CH, Songkumarn P, Afzal AJ, Ning Y, Wang R, Bellizzi M, Valent B, Wang G-L (2012) The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern–triggered immunity in rice. Plant Cell 24:4748–4762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park G, Xue GY, Zheng L, Lam S, Xu JR (2002) MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 15:183–192

    Article  CAS  PubMed  Google Scholar 

  • Park G, Xue C, Zhao X, Kim Y, Orbach M et al (2006) Multiple upstream signals converge on an adaptor protein Mst50 to activate the PMK1 pathway in Magnaporthe grisea. Plant Cell 18:2822–2835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park SY, Choi J, Lim SE, Lee GW, Park J, Kim Y, Kong S, Kim SR, Rho HS, Jeon J, Chi MH, Kim S, Khang CH, Kang S, Lee YH (2013) Global expression profiling of transcription factor genes provides new insights into pathogenicity and stress responses in the rice blast fungus. PLoS Pathog 9:e1003350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patkar RN, Ramos-Pamplona M, Gupta AP, Fan Y, Naqvi NI (2012) Mitochondrial β-oxidation regulates organellar integrity and is necessary for conidial germination and invasive growth in Magnaporthe oryzae. Mol Microbiol 86:1345–1363

    Article  CAS  PubMed  Google Scholar 

  • Pennisi E (2010) Armed and dangerous. Science 327:804–805

    Article  CAS  PubMed  Google Scholar 

  • Raman V, Simon SA, Romag A, Demirci F, Mathioni SM, Zhai J, Meyers BC, Donofrio NM (2013) Physiological stressors and invasive plant infections alter the small RNA transcriptome of the rice blast fungus. Magnaporthe oryzae BMC Genomics 14:326

    Article  CAS  Google Scholar 

  • Ramanujam R, Naqvi NI (2010) PdeH, a high-affinity cAMP phosphodiesterase, is a key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae. PLoS Pathog 6:e1000897

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramos-Pamplona M, Naqvi NI (2006) Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA. Mol Microbiol 61:61–75

    Article  CAS  PubMed  Google Scholar 

  • Ryder LS, Dagdas YF, Mentlak TA, Kershaw MJ, Thornton CR, Schuster M, Chen J, Wang Z, Talbot NJ (2013) NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Proc Natl Acad Sci U S A 110:3179–3184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saitoh H, Fujisawa S, Mitsuoka C, Ito A, Hirabuchi A, Ikeda K, Irieda H, Yoshino K, Yoshida K, Matsumura H, Tosa Y, Win J, Kamoun S, Takano Y, Terauchi R (2012) Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens. PLoS Pathogen 8:e1002711

    Article  CAS  Google Scholar 

  • Saunders DGO, Aves SJ, Talbot NJ (2010a) Cell cycle-mediated regulation of plant infection by the rice blast fungus Magnaporthe oryzae. The Plant Cell 22:497–507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saunders DGO, Dagdas YF, Talbot NJ (2010b) Spatial un-coupling of mitosis and cytokinesis during appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. The Plant Cell 22:2417–2428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soundararajan S, Jedd G, Li X, Ramos-Pamplona M, Chua NH, Naqvi NI (2004) Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell 16:1564–1574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soanes DM, Chakrabarti A, Paszkiewicz KH, Dawe AL, Talbot NJ (2012) Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8:e1002514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57:177–202

    Google Scholar 

  • Talbot NJ, Ebbole DJ, Hamer JE (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575–1590

    Google Scholar 

  • Tanzer MM, Arst HN, Skalchunes AR, Coffin M, Darveaux BA, Heiniger RW, Shuster JR (2003) Global nutritional profiling for mutant and chemical mode-of-action analysis in filamentous fungi. Funct Integr Genomics 3:160–170

    Google Scholar 

  • Thines E, Weber RW, Talbot NJ (2000) MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:1703–1718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valent B, Khang CH (2010) Recent advances in rice blast effector research. Curr Opin Plant Biol 13:434–441

    Google Scholar 

  • Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot NJ (2006) Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312:580–583

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Thornton CR, Kershaw MJ, Debao L, Talbot NJ (2003) The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol Microbiol 47:1601–1612

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Jenkinson JM, Holcombe LJ, Soanes DM, Veneault-Fourrey C, Bhambra GK, Talbot NJ (2005) The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Biochem Soc Trans 33:384–388

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Soanes DM, Kershaw MJ, Talbot NJ (2007) Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection. Mol Plant Microbe Interact 20:475–491

    Article  PubMed  Google Scholar 

  • Wang J, Zhang Z, Wang Y, Li L, Chai R et al (2013) PTS1 peroxisomal import pathway plays shared and distinct roles to PTS2 pathway in development and pathogenicity of Magnaporthe oryzae. PLOS One 8:e55554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weber RW, Wakley GE, Thines E, Talbot NJ (2001) The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe grisea. Protoplasma 216:101–112

    Article  CAS  PubMed  Google Scholar 

  • Wilson RA, Jenkinson JM, Gibson RP, Littlechild JA, Wang ZY, Talbot NJ (2007) Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J 26:3673–3685

    Article  CAS  PubMed  Google Scholar 

  • Wilson RA, Talbot NJ (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7:185–195

    Article  CAS  PubMed  Google Scholar 

  • Wilson RA, Gibson RP, Quispe CF, Littlechild JA, Talbot NJ (2010) An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Proc Natl Acad Sci U S A 107:21902–21907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson RA, Fernandez J, Quispe CF, Gradnigo J, Seng A, Moriyama E, Wright JD (2012) Towards defining nutrient conditions encountered by the rice blast fungus during host infection. PLoS ONE 7:e47392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu JR, Urban M, Sweigard JA, Hamer JE (1997) The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Mol Plant Microbe Interact 10:187–94

    Article  CAS  Google Scholar 

  • Yan X, Li Y, Yue X, Wang C, Que Y, Kong D, Ma Z, Talbot NJ, Wang Z (2011) Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog 7:e1002385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Kong L, Chen X, Wang D, Qi L, Zhao W, Zhang Y, Liu X, Peng YL (2012) A carnitine-acylcarnitine carrier protein, MoCrc1, is essential for pathogenicity in Magnaporthe oryzae. Curr Genet 58:139–148

    Article  CAS  PubMed  Google Scholar 

  • Yi M, Valent B (2013) Communication between filamentous pathogens and plants at the biotrophic interface. Annu Rev Phytopathol 51:27.1–27.25

    Article  Google Scholar 

  • Zhao XH, Kim Y, Park G, Xu JR (2005) A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell 17:1317–1329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou X, Liu W, Wang C, Xu Q, Wang Y, Ding S, XuJ R (2011) A MADS-box transcription factor MoMcm1 is required for male fertility, microconidium production and virulence in Magnaporthe oryzae. Mol Microbiol 80:33–53

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Zhang H, Li G, Shaw B, Xu J-R (2012) The cyclase-associated protein Cap1 is important for proper regulation of infection-related morphogenesis in Magnaporthe oryzae. PLoS Pathog 8(9):e1002911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The work in the Wilson lab is supported by the National Science Foundation (NSF). The use of the University of Nebraska-Lincoln Microscopy Core Facility to generate Figs. 1 and 2 was supported by a Hardin Distinguished Graduate Fellowship to JF.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Wilson.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, J., Wilson, R.A. Cells in cells: morphogenetic and metabolic strategies conditioning rice infection by the blast fungus Magnaporthe oryzae . Protoplasma 251, 37–47 (2014). https://doi.org/10.1007/s00709-013-0541-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0541-8

Keywords

Navigation