Skip to main content
Log in

Phase-field evolution in Cahn–Hilliard–Korteweg fluids

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the diffusion of different phases in a third-grade Korteweg fluid is modeled by introducing a phase-field as a new independent thermodynamic variable. The constitutive equations are supposed to depend on the mass density and its spatial derivatives up to the second order, as well as on specific internal energy, barycentric velocity and phase-field, together with their first-order spatial derivatives. The compatibility of the model with the second law of thermodynamics is exploited by applying a generalized Liu procedure. For isothermal and isochoric phases, a general evolution equation for the phase-field, which generalizes the classical Cahn–Hilliard equation, is derived. Specific entropy and free energy are proved to depend on the basic unknown fields as well as on their gradients. A general constitutive equation for the Cauchy stress, which encompasses the classical one postulated by Korteweg in 1901, is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse interface methods in fluid mechanics. Ann. Rev. Fluid Mech. 30, 139–165 (1998)

    Article  MathSciNet  Google Scholar 

  2. Antanovskii, L.K.: Microscale theory of surface tension. Phys. Rev. E 54, 6285–6290 (1996)

    Article  Google Scholar 

  3. Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity, Zh. Eksperim. i Teor. Fiz. (USSR), 20, 1064–1082 (1950); Engl. trans. in ter Haar, D.: Men of Physics: L. D. Landau, Pergamon Press, Oxford (1965)

  4. Allen, S.M., Cahn, J.W.: A macroscopic theory for anti phase boundary motion and its application to anti phase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  5. Cahn, J.C.: On spinoidal decomposition. Acta Metall. 9, 795–801 (1961)

    Article  Google Scholar 

  6. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 2, 258–267 (1958)

    Article  Google Scholar 

  7. Cimmelli, V.A., Oliveri, F., Pace, A.R.: A nonlocal phase-field model of Ginzburg–Landau–Korteweg fluids. Continuum Mech. Thermodyn. 27, 367–378 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aifantis, E.C.: Gradient material mechanics: perspectives and prospects. Acta Mech. 224, 2577–2610 (2013)

    Article  MathSciNet  Google Scholar 

  9. Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech. 227, 29–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dunn, J.E., Serrin, J.: On the thermomechanics of the interstitial working. Arch. Ration. Mech. Anal. 88, 95–133 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coleman, B.D., Noll, W.: Thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, I.-S.: Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Ration. Mech. Anal. 46, 131–148 (1972)

    MathSciNet  MATH  Google Scholar 

  13. Truesdell, C.: Rational Thermodynamics. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  14. Cimmelli, V.A., Jou, D., Ruggeri, T., Ván, P.: Entropy principle and recent results in non-equilibrium theories. Entropy 16, 1756–1807 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cimmelli, V.A., Oliveri, F., Pace, A.R.: On the thermodynamics of Korteweg fluids with heat conduction and viscosity. J. Elast. 104, 115–131 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cimmelli, V.A., Oliveri, F., Pace, A.R.: Thermodynamical setting for gradient continuum theories with vectorial internal variables: Application to granular materials. Int. J. Non-Linear Mech. 49, 72–76 (2013)

    Article  Google Scholar 

  17. Cimmelli, V.A.: An extension of Liu procedure in weakly nonlocal thermodynamics. J. Math. Phys. 48, 113510 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cimmelli, V.A., Sellitto, A., Triani, V.: A new thermodynamic framework for second-grade Korteweg-type fluids. J. Math. Phys. 50, 053101 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cimmelli, V.A., Sellitto, A., Triani, V.: A new perspective on the form of the first and second laws in rational thermodynamics: Korteweg fluids as an example. J. Non-Equilib. Thermodyn. 35, 251–265 (2010)

    MATH  Google Scholar 

  20. Cimmelli, V.A., Oliveri, F., Triani, V.: Exploitation of the entropy principle: proof of Liu theorem if the gradients of the governing equations are considered as constraints. J. Math. Phys. 52, 023511 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gurtin, M.E.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a micro force balance. Physica D 92, 178–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gurtin, M.E., Polignone, D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Mod. Meth. Appl. Sci. 6, 815–831 (1996). (J. Appl. Math. 4, 165–185 (2003))

  23. Podio Guidugli, P.: Models of phase segregation and diffusion of atomic species on a lattice. Ricerche mat. 55, 105–118 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fabrizio, M., Giorgi, C., Morro, A.: A thermodynamic approach to non-isothermal phase-field evolution in continuum physics. Physica D 214, 144–156 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lamorgese, A.G., Molin, D., Mauri, R.: Phase field approach to multiphase flow modeling. Milan J. Math. 79, 597–642 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lowengrub, J., Truskinowsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. A 454, 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Berti, A., Giorgi, C.: A Phase-field model for liquid vapor transitions. J. Non-Equilib. Thermodyn. 34, 219–237 (2009)

    Article  MATH  Google Scholar 

  28. Falk, F.: A new perspective on the form of the first and second laws in rational thermodynamics: Korteweg fluids as an example. J. Non-Equilib. Thermodyn. 17, 53–65 (1992)

    Article  Google Scholar 

  29. Jacqmin, D.: Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57–88 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lamorgese, A. G., Mauri, R.: Buoyancy driven detachment of a wall-bound pendant drop: interface shape at pinchoff and nonequilibrium surface tension. Phys. Rev. E. 92, 032401 (2011)

  31. Korteweg, D. J.: Sur la forme qui prennent les équations du mouvement des fluids si l’on tient compte des forces capillaires par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité, Archives Néerlandaises des sciences exactes et naturelles, 6 Ser. II, 1–24 (1901)

  32. Garik, P., Hetrick, J., Orr, B., Barkey, D., Ben-Jacob, E.: Interfacial cellular mixing and a conjecture on global deposit morphology. Phys. Rev. Lett. 66, 1606–1609 (1991)

    Article  Google Scholar 

  33. Pojman, J.A., Whitmore, C., Turco Liveri, M.L., Lombardo, R., Marszalek, J., Parker, R., Zoltowski, B.: Evidence for the existence of an effective interfacial tension between miscible fluids: isobutyric acid-water and 1-butanol-water in a spinning-drop tensiometer. Langmuir 22, 2569–2577 (2006)

    Article  Google Scholar 

  34. Zoltowski, B., Chekanov, Y., Masere, J., Pojman, J.A., Volpert, V.: Evidence for the existence of an effective interfacial tension between miscible fluids. 2. Dodecyl acrylate-poly(dodecyl acrylate) in a spinning drop tensiometer. Langmuir 23, 5522–5531 (2007)

    Article  Google Scholar 

  35. Bessonov, N., Pojman, J.A., Viner, G., Volpert, V., Zoltowski, B.: Instabilities of diffuse interfaces. Math. Model. Nat. Phenom. 3, 108–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Heida, M., Málek, J.: On Korteweg-type compressible fluid-like materials. Int. J. Eng. Sci. 48, 1313–1324 (2010)

    Article  MATH  Google Scholar 

  37. Heida, M., Málek, J., Rajagopal, K.R.: On the development and generalizations of Cahn–Hilliard equations within a thermodynamic framework. Z. Angew. Math. Phys. 63, 145–169 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Bothe, D., Dreyer, W.: Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mech. 226, 1757–1805 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Morro, A.: Phase-field models for fluid mixtures. Math. Comp. Mod. 45, 1042–1052 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ván, P.: The Ginzburg–Landau equation as a consequence of the second law. Continuum Mech. Thermodyn. 17, 165–169 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  42. Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Nonequilibrium Thermodynamics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  43. Smith, G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Eng. Sci. 9, 899–916 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hearn, A.C.: REDUCE User’s Manual, Version 3.8, Rand, Santa Monica, (2004). Program available at the http://www.reduce-algebra.com

  45. Wolf, T., Brand, A.: CRACK: Solving overdetermined systems of PDEs or ODEs, Reduce library (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Oliveri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cimmelli, V.A., Oliveri, F. & Pace, A.R. Phase-field evolution in Cahn–Hilliard–Korteweg fluids. Acta Mech 227, 2111–2124 (2016). https://doi.org/10.1007/s00707-016-1625-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1625-2

Keywords

Navigation