Skip to main content
Log in

A mathematical model for wave propagation in a composite solid matrix containing two immiscible fluids

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Constitutive relations and field equations have been extended for a porous medium composed of two solids and containing two chemically non-reactive immiscible fluids. By generalizing the closure relation of porosity change and employing this into the mass balance equations, the stress–strain relations have been developed. The idea of generalized compressibility tests is invoked to find the value of dimensionless parameters appearing in the closure relation of porosity change. By generalizing momentum balance equations of Lo et al. (Water Resour Res 41:1–20, 2005), the propagation of dilatational and rotational waves is explored. It is found that four dilatational and two rotational waves exist in the porous medium. In contrast to Biot’s theory, the presence of the second fluid and second solid in the porous medium gives rise to additional P- and S-waves. Variation of phase speeds and corresponding attenuation coefficients of existing waves versus frequency, saturation of the fluid phases and solid fraction are computed numerically and depicted graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biot M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956a)

    Article  MathSciNet  Google Scholar 

  2. Biot M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. High frequency range. J. Acoust. Soc. Am. 28, 179–191 (1956b)

    Article  MathSciNet  Google Scholar 

  3. Plona T.J.: Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl. Phys. Lett. 36, 259–261 (1980)

    Article  Google Scholar 

  4. Deresiewicz H.: The effect of boundaries on wave propagation in a liquid-filled porous solid. IV. Surface waves in half-space. Bull. Seismol. Soc. Am. 52, 627–638 (1962)

    Google Scholar 

  5. Gardner G.H.F.: Extensional wave in fluid saturated porous cylinders. J. Acoust. Soc. Am. 34, 36–40 (1962)

    Article  Google Scholar 

  6. Deresiewicz H., Skalak R.: On uniqueness in dynamic poroelasticity. Bull. Seismol. Soc. Am. 53, 783–789 (1963)

    Google Scholar 

  7. Deresiewicz H., Rice J.T.: The effect of boundaries on wave propagation in a liquid-filled porous solid. III. Reflection of plane waves at a free plane boundary. Bull. Seismol. Soc. Am. 52, 595–626 (1962)

    Google Scholar 

  8. Deresiewicz H., Rice J.T.: The effect of boundaries on wave propagation in a liquid-filled porous solid. V. Transmission across plane interface. Bull. Seismol. Soc. Am. 54, 409–416 (1964)

    Google Scholar 

  9. Deresiewicz H., Levy A.: The effect of boundaries on wave propagation in a liquid-filled porous solid. II. Transmission through a stratified medium. Bull. Seismol. Soc. Am. 57, 381–392 (1967)

    Google Scholar 

  10. Rice J.R., Cleary M.P.: Some basic stress diffusion solution for fluid saturated elastic porous media with compressible constituents. Rev. Geophys. Space 14, 227–241 (1976)

    Article  Google Scholar 

  11. Yew C.H., Jogi P.N.: Study of wave motion in fluid saturated porous rocks. J. Acoust. Soc. Am. 60, 2–8 (1976)

    Article  Google Scholar 

  12. Cleary M.P.: Fundamental solution for a fluid saturated porous solid. Int. J. Solids Struct. 13, 785–806 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Berryman J.G.: Effective conductivity by fluid analogy for a porous insulator filled with a conductor. Phys. Rev. B 27, 7789–7792 (1983)

    Article  Google Scholar 

  14. De la Cruz V., Spanos T.J.T.: Seismic wave propagation in a porous medium. Geophysics 50, 1556–1565 (1985)

    Article  Google Scholar 

  15. Wu K., Xue Q., Adler L.: Reflection and transmission of elastic waves from a fluid saturated porous solid boundary. J. Acoust. Soc. Am. 87, 2349–2358 (1990)

    Article  Google Scholar 

  16. Albert D.G.: A comparison between wave propagation in water saturated and air saturated porous material. J. Appl. Phys. 73, 28–36 (1993)

    Article  Google Scholar 

  17. Schanz M.D., Diebels S.: A comparative study of Biot’s theory and the linear theory of porous media for wave propagation problems. Acta Mech. 161, 213–235 (2003)

    MATH  Google Scholar 

  18. Sharma M.D.: 3-D wave propagation in a general anisotropic porous elastic medium: Reflection and refraction at an interface with fluid. Geophys. J. Int. 157, 947–958 (2004)

    Article  Google Scholar 

  19. Brutsaert W.: The propagation of elastic waves in unconsolidated unsaturated granular medium. J. Geophys. Res. 69, 243–257 (1964)

    Article  Google Scholar 

  20. Berryman J.G.: Seismic wave attenuation in fluid-saturated porous media. PAGEOPH 128, 423–432 (1988)

    Article  Google Scholar 

  21. Leclaire P., Cohen-Tenoudji F., Aguirre Puente J.: Extension of Biot’s theory of wave propagation to frozen porous media. J. Acoust. Soc. Am. 96, 3753–3768 (1994)

    Article  Google Scholar 

  22. Leclaire P., Cohen-Tenoudji F., Aguirre Puente J.: Observation of two longitudinal and two transverse waves in a frozen porous medium. J. Acoust. Soc. Am. 97, 2052–2055 (1995)

    Article  Google Scholar 

  23. Carcione J.M.: A model for seismic velocity and attenuation in petroleum source rocks. Geophysics 65, 1080–1092 (2000)

    Article  Google Scholar 

  24. Santos J.E., Corbero J., Douglas J.: Static and dynamic behavior of a porous solid saturated by a two phase fluid. J. Acoust. Soc. Am. 87, 1428–1438 (1990)

    Article  MathSciNet  Google Scholar 

  25. Santos J.E., Douglas J., Corbero J., Lovera O.M.: A model for wave propagation in a porous medium saturated by a two phase fluid. J. Acoust. Soc. Am. 87, 1439–1448 (1990)

    Article  MathSciNet  Google Scholar 

  26. Santos J.E., Ravazzoli C.L., Carcione J.M.: A model for wave propagation in a composite solid matrix saturated by a single-phase fluid. J. Acoust. Soc. Am. 115, 2749–2760 (2004)

    Article  Google Scholar 

  27. Carcione J.M., Gurevich B., Cavallini F.: A generalized Biot–Gassmann model for the acoustic properties of shaley sandstones1. Geophys. Prospect. 48, 539–557 (2000)

    Article  Google Scholar 

  28. Carcione J.M., Seriani G.: Wave simulation in frozen porous media. J. Comput. Phys. 170, 676–695 (2001)

    Article  MATH  Google Scholar 

  29. Arora A., Painuly A., Tomar S.K.: Body waves in composite solid matrix containing two immiscible fluids. TiPM 108, 531–554 (2015). doi:10.1007/s11242-015-0486-9

    MathSciNet  Google Scholar 

  30. Tuncay K., Corapcioglu M.Y.: Wave propagation in poroelastic media saturated by two fluids. J. Appl. Mech. 64, 313–320 (1997)

    Article  MATH  Google Scholar 

  31. Lo W.C., Sposito G., Majer E.: Wave propagation through elastic porous media containing two immiscible fluids. Water Resour. Res. 41, 1–20 (2005)

    Google Scholar 

  32. Lo W.C., Sposito G., Majer E.: Analytical decoupling of poroelasticity equations for acoustic wave propagation and attenuation in a porous medium containing two immiscible fluids. J. Eng. Math. 64, 219–235 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lo W.C., Sposito G., Majer E., Yeh C.L.: Motional modes of dilatational waves in elastic porous media containing two immiscible fluids. Adv. Water Resour. 33, 304–311 (2010)

    Article  Google Scholar 

  34. Biot M.A.: Mechanics of deformation and acoustic wave propagation in porous media. J. Appl. Phys. 33, 1482–1498 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  35. Berryman J.G., Thigpen L., Chin R.C.Y.: Bulk elastic wave propagation in partially saturated porous solids. J. Acoust. Soc. Am. 84, 360–373 (1988)

    Article  Google Scholar 

  36. Garg S.K., Nayfeh A.H.: Compressional wave propagation in liquid and/or gas saturated elastic porous media. J. Appl. Phys. 60, 3045–3055 (1986)

    Article  Google Scholar 

  37. Lo W.C., Sposito G., Majer E.: Immiscible two-phase fluid flows in deformable porous media. Adv. Water Resour. 25, 1105–1117 (2002)

    Article  Google Scholar 

  38. Biot M.A., Willis D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)

    MathSciNet  Google Scholar 

  39. Whitaker S.: Transport equations for multiphase system. Chem. Eng. Sci. 28, 139–147 (1973)

    Article  Google Scholar 

  40. Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Hydrol. Pap. 3, Civ. Eng. Dep. Colo. State Univ. Fort Collins (1964)

  41. Tuncay K., Corapcioglu M.Y.: Body waves in poroelastic media saturated by two immiscible fluids. J. Geophys. Res. 111, 25149–25159 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tomar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, A., Bala, N. & Tomar, S.K. A mathematical model for wave propagation in a composite solid matrix containing two immiscible fluids. Acta Mech 227, 1453–1467 (2016). https://doi.org/10.1007/s00707-016-1571-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1571-z

Keywords

Navigation