Skip to main content
Log in

Hydrodynamic modeling of hot-carrier effects in a PN junction solar cell

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This article presents a one-dimensional two-temperature hydrodynamic model to study the thermal and electrical behavior of a gallium arsenide (GaAs) PN junction solar cell. This model treats both electron and heat transfer on equal footing and includes Gauss’s law, continuity and momentum equations for electrons and holes, and energy balance using temperature for both carriers and lattice. A zero-order system of equations is obtained using asymptotic series expansions based on the electron Reynolds number for steady-state conditions. An iterative scheme is implemented to solve the zero-order system. The results show the influence of carriers and lattice temperatures in the electrical performance of a GaAs PN junction solar cell. Higher values of power output are obtained with low lattice temperature and hot energy carriers. This modeling contributes to improve the thermal control in photovoltaic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Royne A., Dey C.J., Mills D.R.: Cooling of photovoltaic cells under concentrated illumination: a critical review. Sol. Energy Mater. Sol. Cells 86, 451–483 (2005)

    Article  Google Scholar 

  2. De Vos A.: Detailed balance limit of the efficiency of tandem solar cells. J. Appl. Phys. 13, 839–846 (1980)

    Google Scholar 

  3. Luque, A., Marti, A.: Theoretical limits of photovoltaic energy conversion. In: Handbook of Photovoltaic Science and Engineering, Wiley (2011)

  4. Shur M.: Introduction to Electronic Devices. Wiley, New York (1996)

    Google Scholar 

  5. Sze S.M.: Semiconductor Devices, Physics and Technology. Wiley, New York (2002)

    Google Scholar 

  6. Lin A.S., Phillips J.D.: Drift–diffusion modeling for impurity photovoltaic devices. IEEE Trans. Electron Devices 56, 3168–3174 (2009)

    Article  Google Scholar 

  7. Nelson J.: The Physics of Solar Cells. Imperial College Press, London (2003)

    Book  Google Scholar 

  8. Blotekjaer K.: Transport equations for electrons in two-valley semiconductors. IEEE Trans. Electron Devices 17, 38–47 (1970)

    Article  Google Scholar 

  9. Majumdar A., Fushinobu K., Hijikata K.: Effect of gate voltage on hot-electron and hot-phonon interaction and transport in a submicrometer transistor. J. Appl. Phys. 77, 6686–6694 (1995)

    Article  Google Scholar 

  10. Ballestra L., Micheletti S., Sacco R.: Semiconductor device simulation using a viscous-hydrodynamic model. Comput. Methods Appl. Mech. Eng. 191, 5447–5466 (2002)

    Article  MATH  Google Scholar 

  11. Jüngel A., Tang S.: A relaxation scheme for the hydrodynamic equations for semiconductors. Appl. Numer. Math. 43, 229–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Falco, C., Sacco, R., Scrofani, G.: Stabilized 3D finite elements for the numerical solution of the Navier-Stokes equations in semiconductors. Compu. Methods Appl. Mech. Eng. 196, 1729–1744 (2007)

  13. Romano V., Rusakov A.: 2d numerical simulations of an electron–phonon hydrodynamical model based on the maximum entropy principle. Comput. Methods Appl. Mech. Eng. 199, 2741–2751 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Calderón-Muñoz, W., Sen M., Jena D.: Hydrodynamic instability of one-dimensional electron flow in ungated semiconductors. J. Appl. Phys. 102, 0237034 (2007)

  15. Calderón-Muñoz W., Jena D., Sen M.: Hydrodynamic instability of confined two-dimensional electron flow in semiconductors. J. Appl. Phys. 106, 0145064 (2009)

    Google Scholar 

  16. Abrarov R.M., Sherman E.Y., Sipe J.E.: Hydrodynamic model for relaxation of optically injected currents in quantum wells. Appl. Phys. Lett. 91, 232113 (2007)

    Article  Google Scholar 

  17. Sherman E.T., Abrarov R.M., Sipe J.E.: Dynamics of optically injected two-dimensional currents. J. Appl. Phys. 104, 103701 (2008)

    Article  Google Scholar 

  18. Mohseni K., Shakouri A., Ranm R.J., Abraham M.C.: Electron vortices in semiconductors devices. Phys. Fluids 17, 100602 (2005)

    Article  MATH  Google Scholar 

  19. Chen G.: Potential-step amplified nonequilibrium thermal-electric converters. J. Appl. Phys. 97, 1–9 (2005)

    Article  Google Scholar 

  20. Calderón-Muñoz W., Jena D., Sen M.: Thermal influence on hydrodynamic instabilities in a one-dimensional electron flow in semiconductors. J. Appl. Phys. 107, 0745044 (2010)

    Google Scholar 

  21. Osses-Márquez J., Calderón-Muñoz W.: Thermal influence on charge carrier transport in solar cells based on GaAs PN junctions. J. Appl. Phys. 116, 154502 (2014)

    Article  Google Scholar 

  22. Kim J.P., Lim H., Song J.H., Chang Y.J., Jeon C.H.: Numerical analysis on the thermal characteristics of photovoltaic module with ambient temperature variation. Sol. Energy Mater. Sol. Cells 95, 404–407 (2011)

    Article  Google Scholar 

  23. Holmes M.H.: Introduction to Perturbation Methods. Springer, New York (1995)

    Book  MATH  Google Scholar 

  24. Goodnick, S.M., Honsberg, C.: Ultrafast carrier relaxation and nonequilibrium phonons in hot carrier solar cells. In: Photovoltaic Specialists Conference (PVSC) IEEE, 2011 37th IEEE, 002066–002070, (2011)

  25. Beard M.C., Ellingson R.J.: Multiple exciton generation in semiconductor nanocrystals: toward efficient solar energy conversion. Laser Photon. Rev. 25, 377–399 (2008)

    Article  Google Scholar 

  26. Bissels G.M.M.W., Asselbergs M.A.H., Bauhuis G.J., Mulder P., Haverkamp E.J., Vlieg E., Schermer J.J.: Anomalous IV-characteristics of a GaAs solar cell under high irradiance. Sol. Energy Mater. Sol. Cells 104, 97–101 (2012)

    Article  Google Scholar 

  27. Nishioka K., Takamoto T., Agui T., Kaneiwa M., Uraoka Y., Fuyuki T.: Evaluation of temperature characteristics of high-efficiency InGaP/InGaAs/Ge triple-junction solar cells under concentration. Sol. Energy Mater. Sol. Cells 85, 429–436 (2005)

    Article  Google Scholar 

  28. Feteha M.Y., Eldallal G.M.: The effects of temperature and light concentration on the GaInP/GaAs multijunction solar cells performance. Renew. Energy 28, 1097–1104 (2003)

    Article  Google Scholar 

  29. Nishioka K., Takamoto T., Agui T., Kaneiwa M., Uraoka Y., Fuyuki T.: Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cells characteristics and field-test meteorological data. Sol. Energy Mater. Sol. Cells 90, 57–67 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Williams R. Calderón-Muñoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calderón-Muñoz, W.R., Jara-Bravo, C. Hydrodynamic modeling of hot-carrier effects in a PN junction solar cell. Acta Mech 227, 3247–3260 (2016). https://doi.org/10.1007/s00707-015-1538-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1538-5

Keywords

Navigation