Skip to main content

Requisites for Highly Efficient Hot-Carrier Solar Cells

  • Chapter
  • First Online:
Quantum Dot Solar Cells

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 15))

Abstract

We have constructed new models based on detailed balance of particle and energy fluxes to clarify the operating principle of hot-carrier solar cells (HC-SCs) and find the requisites for high conversion efficiency. Energy dissipation due to thermalization of photogenerated carriers can be significantly reduced, even though the thermalization time is not sufficiently long. Instead, the energy dissipation related to entropy generation associated with hot-carrier extraction is remarkable. The thermalization time must be several nanoseconds to exceed the Shockley–Queisser limit under the 1 sun solar irradiation and over 10 ns to compete against triple-junction solar cells at 1,000 sun. The other requisites unique to hot-carrier extraction are a short carrier equilibration time being around one-thousandth of the thermalization time, and an energy-selection width of energy-selective contacts (ESCs) for mono-energetic carrier extraction, which is needed to match the quasi-Fermi levels in the hot absorber and in the cold electrodes, being narrower than 0.1 eV. It seems extremely challenging to fulfill all the requisites, although investigations for material development as well as new concepts for post conventional HC-SCs are underway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green, M.A.: Third Generation Photovoltaics. Springer, Berlin (2003)

    Google Scholar 

  2. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Article  ADS  Google Scholar 

  3. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 42). Prog. Photovolt. Res. Appl. 21, 827–837 (2013)

    Article  Google Scholar 

  4. Yoshida, A., Agui, T., Nakaido, K., Murasawa, K., Juso, H., Sasaki, K., Takamoto, T.: Development of InGaP/GaAs/InGaAs inverted triple junction solar cells for concentrator application. In: Technical Digest of the 21st Photovoltaic Science and Engineering Conference, 4B-4O-01 (2011), Fukuoka, Japan, Nov. 28–Dec.2, 2011

    Google Scholar 

  5. Yamaguchi, M., Suzuki, H., Oshita, Y., Kojima, N., Takamoto, T.: Recent R&D topics on concentrator multi-junction solar cells and materials under innovative solar cells’s project. In: Proceedings of the 35th IEEE Photovoltaic Specialists Conference, pp. 1237–1242 (2010), Honolulu, HI, USA, June 20–25, 2010

    Google Scholar 

  6. King, R.R., Bhusari, D., Larrabee, D., Liu, X.-Q., Rehder, E., Edmondson, K., Cotal, H., Jones, R.K., Ermer, J.H., Fetzer, C.M., Law, D.C., Karam, N.H.: Solar cell generations over 40% efficiency. Prog. Photovolt. Res. Appl. 20, 801–815 (2012)

    Article  Google Scholar 

  7. Luque, A., Martí, A.: Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014–5017 (1997)

    Article  ADS  Google Scholar 

  8. Luque, A., Martí, A.: The intermediate band solar cell: progress toward the realization of an attractive concept. Adv. Mater. 22, 160–174 (2010)

    Article  Google Scholar 

  9. Trupke, T., Green, M.A.: Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92, 4117–4122 (2002)

    Article  ADS  Google Scholar 

  10. Cuadra, L., Martí, A., Luque, A.: Influence of the overlap between the absorption coefficients on the efficiency of the intermediate band solar cell. IEEE Trans. Electron Devices ED-51, 1002–1007 (2004)

    Article  ADS  Google Scholar 

  11. Navruz, T.S., Saritas, M.: Efficiency variation of the intermediate band solar cell due to the overlap between absorption coefficients. Solar Energy Mater. Solar Cells 92, 273–282 (2008)

    Article  Google Scholar 

  12. Kim, S.J., Kim, W.J., Cartwright, A.N., Prasad, P.N.: Carrier multiplication in a PbSe nanocrystal and P3HT/PCBM tandem cell. Appl. Phys. Lett. 92, 191107 (2008)

    Article  ADS  Google Scholar 

  13. Sukhovatkin, V., Hinds, S., Brzozowski, L., Sargent, E.H.: Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324, 1542–1544 (2009)

    Article  ADS  Google Scholar 

  14. Trupke, T., Green, M.A., Würfel, P.: Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92, 1668–1674 (2002)

    Article  ADS  Google Scholar 

  15. Beard, M.C.: Multiple exciton generation in semiconductor quantum dots. J. Phys. Chem. 2, 1282–1288 (2011)

    Google Scholar 

  16. Takeda, Y., Motohiro, T.: Requisites to realize high conversion efficiency of solar cells utilizing carrier multiplication. Solar Energy Mater. Solar Cells 94, 1399–1405 (2010)

    Article  Google Scholar 

  17. Timmerman, D., Valenta, J., Dohnalová, K., de Boer, W.D.A.M., Gregorkiewicz, T.: Step-like enhancement of luminescence quantum yield of silicon nanocrystals. Nat. Nanotechnol. 6, 710–713 (2011)

    Article  ADS  Google Scholar 

  18. Trinh, M.T., Limpens, R., de Boer, W.D.A.M., Schins, J.M., Siebbeles, L.D.A., Gregorkiewicz, T.: Direct generation of multiple excitons in adjacent silicon nanocrystals revealed by induced absorption. Nat. Photonics 6, 316–321 (2012)

    Article  ADS  Google Scholar 

  19. Ross, R.T., Nozik, A.J.: Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53, 3813–3818 (1982)

    Article  ADS  Google Scholar 

  20. Würfel, P.: Solar energy conversion with hot electrons from impact ionization. Solar Energy Mater. Solar Cells 46, 43–52 (1997)

    Article  Google Scholar 

  21. Takeda, Y., Ito, T., Motohiro, T., König, D., Shrestha, S., Conibeer, G.: Hot carrier solar cells operating under practical conditions. J. Appl. Phys. 105, 074905 (2009)

    Article  ADS  Google Scholar 

  22. Takeda, Y., Motohiro, T.: Highly efficient solar cells using hot carriers generated by two-step photo-excitation. Solar Energy Mater. Solar Cells 95, 2638–2644 (2011)

    Article  Google Scholar 

  23. Takeda, Y., Ito, T., Suzuki, R., Motohiro, T., Shrestha, S., Conibeer, G.: Impact ionization and Auger recombination at high carrier temperatures. Solar Energy Mater. Solar Cells 93, 797–802 (2009)

    Article  Google Scholar 

  24. Würfel, P.: The chemical potential of radiation. J. Phys. C Solid State Phys. 15, 3967–3985 (1982)

    Article  ADS  Google Scholar 

  25. Rosenwaks, Y., Hanna, M.C., Levi, D.H., Szmyd, D.M., Ahrenkiel, R.K., Nozik, A.J.: Hot-carrier cooling in GaAs: quantum wells versus bulk. Phys. Rev. B 48, 14675–14678 (1993)

    Article  ADS  Google Scholar 

  26. Luque, A., Martí, A.: Electron–phonon energy transfer in hot-carrier solar cells. Solar Energy Mater. Solar Cells 94, 287–296 (2010)

    Article  Google Scholar 

  27. Humphrey, T.E., Newbury, R., Taylor, R.P., Linke, H.: Reversible quantum Brownian heat engines for electrons. Phy. Rev. Lett. 89, 116801 (2002)

    Article  ADS  Google Scholar 

  28. Madelung, O.: Semiconductors: Data Handbook. Springer, Berlin (2003)

    Google Scholar 

  29. Web site for NREL’S AM1.5 Standard Dataset. http://rredc.nrel.gov/solar/spectra/am1.5/. Accessed 25 Oct 2012

  30. Araki, K., Kondo, M., Uozumi, H., Ekins-Daukes, N.J., Egami, T., Hiramatsu, M., Miyazaki, Y., Yamaguchi, M.: Packaging III–V tandem solar cells for practical terrestrial applications achievable to 27% of module efficiency by conventional machine assemble technology. Solar Energy Mater. Solar Cells 90, 3320–3326 (2006)

    Article  Google Scholar 

  31. Luque, A.: Will we exceed 50% efficiency in photovoltaics? J. Appl. Phys. 110, 031301 (2011)

    Article  Google Scholar 

  32. Markvart, T.: Solar cell as a heat engine: energy-entropy analysis of photovoltaic conversion. Physica Status Solidi A 12, 2752–2756 (2008)

    Article  ADS  Google Scholar 

  33. Hirst, L.C., Ekins-Daukes, N.J.: Fundamental losses in solar cells. Prog. Photovolt. Res. Appl. 19, 286–293 (2011)

    Article  Google Scholar 

  34. Dutta, N.K., Nelson, R.J.: The case for Auger recombination in In1−xGaxAsyP1−y. J. Appl. Phys. 53, 74–92 (1982)

    Article  ADS  Google Scholar 

  35. Chiu, L.C., Chen, P.C., Yariv, A.: Interband Auger recombination in InGaAsP. IEEE J. Quantum Electron. QE-18, 938–941 (1982)

    Article  ADS  Google Scholar 

  36. Hausser, S., Fuchs, G., Hangleiter, A., Streubel, K., Tsang, W.T.: Auger recombination in bulk and quantum well InGaAs. Appl. Phys. Lett. 56, 913–915 (1990)

    Article  ADS  Google Scholar 

  37. Rees, R., Blood, P., Vanhommerig, M.J.H., Davies, G.J., Skevington, P.J.: The temperature dependence of threshold current of chemical beam epitaxy grown InGaAs-InP lasers. J. Appl. Phys. 78, 1804–1807 (1995)

    Article  ADS  Google Scholar 

  38. Ahrenkiel, R.K., Ellingson, R., Johnston, S., Wanlass, M.: Recombination lifetime of In0.53Ga0.47As as a function of doping density. Appl. Phys. Lett. 72, 3470–3472 (1998)

    Article  ADS  Google Scholar 

  39. Aliberti, P., Feng, Y., Takeda, Y., Shrestha, S.K., Green, M.A., Conibeer, G.: Investigation of theoretical efficiency limit of hot carriers solar cells with a bulk indium nitride absorber. J. Appl. Phys. 108, 094507 (2010)

    Article  ADS  Google Scholar 

  40. Aliberti, P., Feng, Y., Shrestha, S.K., Green, M.A., Conibeer, G., Tu, L.W., Tseng, P.H., Clady, R.: Effects of non-ideal energy selective contacts and experimental carrier cooling rate on the performance of an indium nitride based hot carrier solar cell. Appl. Phys. Lett. 99, 223507 (2011)

    Article  ADS  Google Scholar 

  41. Feng, Y., Aliberti, P., Veettil, B.P., Patterson, R., Shrestha, S., Green, M.A., Conibeer, G.: Non-ideal energy selective contacts and their effect on the performance of a hot carrier solar cell with an indium nitride absorber. Appl. Phys. Lett. 100, 053502 (2012)

    Article  ADS  Google Scholar 

  42. Würfel, P., Brown, A.S., Humphrey, T.E., Green, M.A.: Particle conservation in the hot-carrier Solar Cell. Prog. Photovolt. Res. Appl. 13, 277–285 (2005)

    Article  Google Scholar 

  43. Takeda, Y., Motohiro, T., König, D., Aliberti, P., Feng, Y., Shrestha, S., Conibeer, G.: Practical factors lowering conversion efficiency of hot carrier solar cells. Appl. Phys. Exp. 3, 104301 (2010)

    Article  ADS  Google Scholar 

  44. Snoke, D.W.: Density dependence of electron scattering at low density. Phys. Rev. B 50, 11583–11591 (1994)

    Article  ADS  Google Scholar 

  45. Davis, J.H.: The Physics of Low-Dimensional Semiconductors. Cambridge University Press, Cambridge (1998). Chapter 5

    Google Scholar 

  46. O’Dwyer, M.F., Humphrey, T.E., Lewis, R.A., Zhang, C.: Electronic and thermal transport in hot carrier solar cells with low-dimensional contacts. Nanoelectron. J. 39, 656–659 (2008)

    Google Scholar 

  47. Veetill, B.P., Patterson, T., König, D., Conibeer, G., Green, M.A.: Optimized resonant tunneling structures with high conductivity and selectivity. Europhys. Lett. 96, 57006 (2011)

    Article  ADS  Google Scholar 

  48. Conibeer, G., Ekins-Daukes, N., Guillemoles, J.-F., König, D., Cho, E.-C., Jiang, C.-W., Shrestha, S., Green, M.: Progress on hot carrier cells. Solar Energy Mater. Solar Cells 93, 713–719 (2009)

    Article  Google Scholar 

  49. Le Bris, A., Guillemoles, J.-F.: Hot carrier solar cells: achievable efficiency accounting for heat losses in the absorber and through contacts. Appl. Phys. Lett. 97, 113506 (2010)

    Article  ADS  Google Scholar 

  50. Le Bris, A., Lombez, L., Laribi, S., Boissier, G., Christold, P., Guillemoles, J.-F.: Thermalisation rate study of GaSb-based heterostructures by continuous wave photoluminescence and their potential as hot carrier solar cell absorbers. Energy Environ. Sci. 5, 6225–6232 (2012)

    Article  Google Scholar 

  51. Elsaesser, T., Shah, J., Rota, L., Lugli, P.: Initial thermalization of photoexcited carriers by femtosecond luminescence spectroscopy. Phys. Rev. Lett. 13, 1757–1760 (1991)

    Article  ADS  Google Scholar 

  52. Snoke, D.W., Rühle, W.W., Lu, Y.-C., Bauser, E.: Evolution of a nonthermal electron energy distribution in GaAs. Phys. Rev. B 45, 10979–10989 (1992)

    Article  ADS  Google Scholar 

  53. Leitenstorfer, A., Fürst, C., Laubereau, A., Kaiser, W.: Femtosecond carrier dynamics in GaAs far from equilibrium. Phys. Rev. Lett. 76, 1545–1548 (1996)

    Article  ADS  Google Scholar 

  54. Kirk, A.P., Fischetti, M.V.: Fundamental limitations of hot-carrier solar cells. Phys. Rev. B 86, 165206 (2012)

    Article  ADS  Google Scholar 

  55. Bockelmann, B., Bastard, G.: Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gasses. Phys. Rev. B 42, 8947–8951 (1990)

    Article  ADS  Google Scholar 

  56. Benisty, H., Sotomayor-Torres, C.M., Weisbuch, C.: Intrinsic mechanism for the poor luminescence properties of quantum-box systems. Phys. Rev. B 44, 10945–10948 (1990)

    Article  ADS  Google Scholar 

  57. Heitz, R., Born, H., Guffarth, G., Stier, O., Schliwa, A., Hoffmann, A., Bimberg, D.: Existence of a phonon bottleneck for excitons in quantum dots. Phys. Rev. B 64, 241305 (2001)

    Article  ADS  Google Scholar 

  58. Kitamura, T., Ohtsubo, R., Murayama, M., Kuroda, T., Yamaguchi, K., Tackeuchi, K.: Direct observation of phonon relaxation bottleneck in InAs quantum dots of high uniformity. Physica Status Solidi C 0, 1165–1168 (2003)

    Article  Google Scholar 

  59. Sanguinetti, S., Guzzi, M., Grilli, E., Gurioli, M., Seravalli, L., Frigeri, P., Franchi, S., Capizzi, M., Mazzuccato, S., Polimeni, A.: Effective phonon bottleneck in the carrier thermalization of InAs/GaAs quantum dots. Phys. Rev. B 80(78), 085313 (2008)

    Article  ADS  Google Scholar 

  60. Hendry, E., Koeberg, M., Wang, F., Zhang, H., Mello Donegá, C., Vanmaekelbergh, D., Bonn, M.: Direct observation of electron-to-hole energy transfer in CdSe quantum dots. Phys. Rev. Lett. 96, 057408 (2006)

    Article  ADS  Google Scholar 

  61. Urayama, J., Norris, T.B., Singh, J., Bhattacharya, P.: Observation of phonon bottleneck in quantum dot electronic relaxation. Phys. Rev. Lett. 86, 4930–4933 (2001)

    Article  ADS  Google Scholar 

  62. Nishikawa, K., Takeda, Y., Motohiro, T., Sato, D., Ota, J., Miyashita, N., Okada, Y.: Extremely long carrier lifetime over 200 ns in GaAs wall-inserted type II InAs quantum dots. Appl. Phys. Lett. 100, 113105 (2012)

    Article  ADS  Google Scholar 

  63. Sato, D., Ota, J., Nishikawa, K., Takeda, Y., Motohiro, T., Miyashita, N., Okada, Y.: Extremely long carrier lifetime at intermediate states in wall-inserted type II quantum dot absorbers. J. Appl. Phys. 112, 094305 (2012)

    Article  ADS  Google Scholar 

  64. Pandy, A., Guyot-Sionnest, P.: Slow electron cooling in colloidal quantum dots. Science 322, 929–932 (2008)

    Article  ADS  Google Scholar 

  65. Li, X.-Q., Nakayama, H., Arakawa, Y.: Phonon bottleneck in quantum dots: role of lifetime of the confined optical phonons. Phys. Rev. B 59, 5069–5073 (1999)

    Article  ADS  Google Scholar 

  66. Bahir, G., Finkman, E., Fossard, F., Julien, F.H., Brault, J., Gendry, M., Schacham, S.E.: Intraband polaron dynamics of excited carriers in InAs/InxAl1−xAs quantum dots. Phys. Rev. B 71, 075327 (2005)

    Article  ADS  Google Scholar 

  67. Kambhampati, P.: Hot exciton relaxation dynamics in semiconductor quantum dots: radiationless transitions on the nanoscale. J. Phys. Chem. C 115, 22089–22109 (2011)

    Article  Google Scholar 

  68. Tisdale, W.A., Williams, K.J., Timp, B.A., Norris, D.J., Aydil, E.S., Zhu, X.-Y.: Hot-electron transfer from semiconductor nanocrystals. Science 328, 1543–1547 (2010)

    Article  ADS  Google Scholar 

  69. Petrosyan, L.S., Kirakosyan, A.S., Shahbazyan, T.V.: Extraordinary electron transmission through a periodic array of quantum dots. Phys. Rev. B 107, 196802 (2011)

    ADS  Google Scholar 

  70. Gao, Y., Talgorn, E., Aerts, M., Trinh, M.T., Schins, J.M., Houtepen, A.J., Siebbeles, L.D.A.: Enhanced hot-carrier cooling and ultrafast spectral diffusion in strongly coupled PbSe quantum-dot solids. Nano Lett. 11, 5471–5476 (2011)

    Article  ADS  Google Scholar 

  71. Tea, E., Hamzeh, H., Aniel, F.: Hot carriers relaxation in highly excited polar semiconductors: hot phonons versus phonon–plasmon coupling. J. Appl. Phys. 110, 113108 (2011)

    Article  ADS  Google Scholar 

  72. Klemens, P.G.: Anharmonic decay of optical phonons. Phys. Rev. 148, 845–848 (1966)

    Article  ADS  Google Scholar 

  73. Conibeer, G.J., König, D., Green, M.A., Guillemoles, J.-F.: Slowing of carrier cooling in hot carrier solar cells. Thin Solid Films 516, 6948–6953 (2008)

    Article  ADS  Google Scholar 

  74. König, D., Casalenuovo, K., Takeda, Y., Conibeer, G., Guillemoles, J.-F., Patterson, R., Huang, L.M., Green, M.A.: Hot carrier solar cells: principles, materials and design. Physica E 42, 2862–2866 (2010)

    Article  ADS  Google Scholar 

  75. Ridley, B.K.: The LO phonon lifetime in GaN. J. Phys. Condens. Matter 8, L511 (1996)

    Article  ADS  Google Scholar 

  76. Pomeroy, J.W., Kuball, M., Lu, H., Schaff, W.J., Wang, X., Yoshikawa, A.: Phonon lifetimes and phonon decay in InN. Appl. Phys. Lett. 86, 223501 (2005)

    Article  ADS  Google Scholar 

  77. Davydov, V., Emtsev, V., Goncharuk, I., Smirnov, A., Petrikov, V., Mamutin, V., Vekshin, V., Ivanov, S., Smirnov, M.B., Inushima, T.: Experimental and theoretical studies of phonons in hexagonal InN. Appl. Phys. Lett. 75, 3297–3299 (1999)

    Article  ADS  Google Scholar 

  78. Chen, F., Cartwright, A.N., Lu, H., Schaff, W.J.: Time-resolved spectroscopy of recombination and relaxation dynamics in InN. Appl. Phys. Lett. 83, 4984–4986 (2003)

    Article  ADS  Google Scholar 

  79. Sun, S.-Z., Wen, Y.-C., Guol, S.-H., Lee, H.-M., Gwo, S., Sun, C.-K.: Observation of femtosecond carrier thermalization time in indium nitride. J. Appl. Phys. 103, 123513 (2008)

    Article  ADS  Google Scholar 

  80. Fukunaga, K., Hashimoto, M., Kunugita, H., Kamimura, J., Kikuchi, A., Kishino, K., Ema, K.: Energy- and density-dependent dynamics of photoexcited carriers in InN films. Appl. Phys. Lett. 95, 232114 (2009)

    Article  ADS  Google Scholar 

  81. Su, Y.-E., Wen, Y.-C., Lee, H.-M., Gwo, S., Sun, C.-K.: Observation of sub-100 femtosecond electron cooling time in InN. Appl. Phys. Lett. 96, 052108 (2010)

    Article  ADS  Google Scholar 

  82. Clady, R., Tayebjee, M.J.Y., Aliberti, P., König, D., Ekins-Daukes, N.J., Conibeer, G.J., Schmidt, T.W., Green, M.A.: Interplay between the hot phonon effect and intervalley scattering on the cooling rate of hot carriers in GaAs and InP. Prog. Photovolt. Res. Appl. 20, 82–92 (2012)

    Article  Google Scholar 

  83. Conibeer, G., Shrestha, S., Huang, S., Patterson, R., Aliberti, P., Xia, H., Feng, Y., Gupta, N., Smyth, S., Liao, Y., Kamikawa, Y., Green, M.A.: Hot carrier solar cell absorbers: Superstructure materials and mechanisms for slowed carrier cooling. In: Proceedings of the 27th European Photovoltaic Solar Energy Conference, pp 81–84 (2012), Frankfurt, Germany, Sept. 24–28, 2012

    Google Scholar 

  84. Patterson, R., Kirkengen, M., Puthen-Veettil, B., König, D., Green, M.A., Conibeer, G.: Phonon lifetimes in model quantum dot superlattice systems with applications to the hot carrier solar cell. Solar Energy Mater. Solar Cells 94, 1931–1935 (2010)

    Article  Google Scholar 

  85. Hirst, L., Führer, M., Farrell, D.J., Le Bris, A., Guillemoles, J.-F., Tayebjee, M.J.Y., Clady, R., Schmidt, T.W., Wang, Y., Sugiyama, M., Ekins-Daukes, N.J.: Hot carrier dynamics in InGaAs/GaAsP quantum well solar cells. In: Proceedings of the 37th IEEE Photovoltaic Specialists Conference, pp. 3302–3306 (2011), Seattle, WA, USA, June 19–24, 2011

    Google Scholar 

  86. Rodière, J., Levard, H., Delamarre, A., Le Bris, A., Laribi, S., Lombez, L., Guillemoles, J.-F., Perez, J.-P., Christol, P., Folliot, H., Tavernier, K., Durand, O., Colin, C., Collin, S., Pelouard, J.-P.: Hot carrier solar cells: from simulation to devices. In: Proceedings of the 27th European Photovoltaic Solar Energy Conference, pp. 89–90 (2012), Frankfurt, Germany, Sept. 24–28, 2012

    Google Scholar 

  87. König, D., Hiller, D., Zacharias, S., Michard, M., Flynn, C.: Static hot carrier populations as a function of optical excitation energy detected through energy selective contacts by optically assisted IV. Prog. Photovolt. Res. Appl. (2013). doi:10.1002/pip.2367

  88. Bryllert, T., Borgstrom, M., Sass, T., Gustafson, B., Landin, L., Wernersson, L.-E., Seifert, W., Samuelson, L.: Designed emitter states in resonant tunneling through quantum dots. Appl. Phys. Lett. 80, 2681–2683 (2002)

    Article  ADS  Google Scholar 

  89. O’Dwyer, M.F., Lewis, R.A., Zhang, C., Humphrey, T.E.: Electronic efficiency in nanostructured thermionic and thermoelectric devices. Phys. Rev. B 72, 205330 (2005)

    Article  ADS  Google Scholar 

  90. Yagi, S., Oshima, R., Okada, Y.: Evaluation of selective energy contacts for hot carrier solar cells based on III–V semiconductors. In: Proceedings of the 34th IEEE Photovoltaic Specialists Conference, pp. 530–533 (2009)

    Google Scholar 

  91. Deshpande, M.R., Sleight, J.W., Reed, M.A., Wheeler, R.G., Matyi, R.J.: Spin splitting of single 0D impurity states in semiconductor heterostructure quantum wells. Phys. Rev. Lett. 76, 1328–1331 (1996)

    Article  ADS  Google Scholar 

  92. Takeda, Y., Motohiro, T.: Hot-carrier extraction from intermediate-band absorbers through quantum-well energy-selective contacts. Jpn. J. Appl. Phys. 51, 10ND03 (2012)

    Article  Google Scholar 

  93. König, D., Takeda, Y., Puthen-Veettil, B.: Technology-compatible hot carrier solar cell with energy selective hot carrier absorber and carrier-selective contacts. Appl. Phys. Lett. 101, 153901 (2012)

    Article  ADS  Google Scholar 

  94. König, D., Takeda, Y., Puthen-Veettil, B., Conibeer, G.: Lattice-matched hot carrier solar cell with energy selectivity integrated into hot carrier absorber. Jpn. J. Appl. Phys. 51, 10ND02 (2012)

    Article  Google Scholar 

  95. Nash, K.J., Skolnick, M.S., Bass, S.J.: Electron–phonon interactions in indium gallium arsenide. Semicond. Sci. Technol. 2, 329–336 (1987)

    Article  ADS  Google Scholar 

  96. Farrell, D.J., Takeda, Y., Nishikawa, N., Nagashima, T., Motohiro, T., Ekins-Daukes, N.J.: A hot-carrier solar cell with optical energy selective contacts. Appl. Phys. Lett. 99, 111102 (2011)

    Article  ADS  Google Scholar 

  97. Sau, T.K., Rogach, A.L., Jäckel, F., Klar, T.A., Feldmann, J.: Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 22, 1805–1825 (2010)

    Article  Google Scholar 

  98. Biagioni, P., Huang, J.-S., Hecht, B.: Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75, 024402 (2012)

    Article  ADS  Google Scholar 

  99. Takeda, Y., Motohiro, T.: Intermediate-band-assisted hot-carrier solar cells using indirect-bandgap absorbers. Prog. Photovolt. Res. Appl. 21, 1308–1318 (2013)

    Google Scholar 

Download references

Acknowledgments

I wish to thank Dr. T. Motohiro, Dr. K. Higuchi, Dr. T. Ito, Dr. T. Ikuno, Dr. S. Ogawa, Dr. K. Yamanaka, K. Nishikawa (Toyota Central R&D Labs., Inc., Japan), T. Nagashima, K. Okumura, D. Sato, J. Ota (Toyota Motor Corp., Japan), Professor G. Conibeer, Dr. D. König, Dr. P. Aliberti (Univ. New South Wales, Australia), Dr. N. J. Ekins-Daukes, Dr. D. J. Farrell (Imperial College London, UK), Professor Y. Okada, Dr. N. Miyashita (Univ. Tokyo, Japan), Dr. S. Yagi (Saitama Univ., Japan), and Dr. R. Oshima (National Institute of Advanced Industrial Science and Technology, Japan) for many valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Takeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Takeda, Y. (2014). Requisites for Highly Efficient Hot-Carrier Solar Cells. In: Wu, J., Wang, Z. (eds) Quantum Dot Solar Cells. Lecture Notes in Nanoscale Science and Technology, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8148-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8148-5_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8147-8

  • Online ISBN: 978-1-4614-8148-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics