Skip to main content
Log in

Frequency-dependent tensile and compressive effective moduli of elastic solids with distributed penny-shaped microcracks

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper develops micromechanics models to estimate the tensile and compressive elastic moduli of elastic solids containing randomly distributed penny-shaped microcracks. The crack faces are open under tension and closed under compression. When the crack faces are closed, they may slide against one another following Coulomb’s law of dry friction. The micromechanics models provide analytical expressions of the tensile and compressive moduli for both static and dynamic cases. It is found that the tensile and compressive moduli are different. Further, under dynamic loading, both compressive and tensile moduli are frequency dependent. As a by-product, the micromechanics models also predict wave attenuation in the dynamic case. Numerical simulations using the finite element method are conducted to validate the micromechanics models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Budiansky B., O’connell R.J.: Elastic moduli of a cracked solid. Int. J. Solids Struct. 12(2), 81–97 (1976)

    Article  MATH  Google Scholar 

  2. Horii H., Nematnasser S.: Overall moduli of solids with microcracks-load-induced anisotropy. J. Mech. Phys. Solids 31(2), 155–171 (1983)

    Article  MATH  Google Scholar 

  3. Kachanov M.: Continuum model of medium with cracks. J. Eng. Mech. Div.-ASCE 106(5), 1039–1051 (1980)

    Google Scholar 

  4. Kachanov M.L.: A microcrack model of rock inelasticity part I: frictional sliding on microcracks. Mech. Mater. 1, 19–27 (1982)

    Article  Google Scholar 

  5. Zhao, Y., et al.: A micromechanics model for the acoustic nonlinearity parameter in solids with distributed microcracks. Ultrasonics (2015) (under review)

  6. Walsh J.B.: New analysis of attenuation in partially melted rock. J. Geophys. Res. 74(17), 4333–4337 (1969)

    Article  Google Scholar 

  7. Achenbach J.D.: Ray methods for waves in elastic solids: with applications to scattering by cracks. In: Gautesen, A.K., McMaken, H. (ed.). Boston: Pitman Advanced Publishing (1982)

  8. Angel Y., Achenbach J.: Reflection and transmission of elastic waves by a periodic array of cracks. J. Appl. Mech. 52(1), 33–41 (1985)

    Article  MATH  Google Scholar 

  9. Angel Y., Achenbach J.: Reflection and transmission of elastic waves by a periodic array of cracks: oblique incidence. Wave Motion 7(4), 375–397 (1985)

    Article  MATH  Google Scholar 

  10. Mal A.: Interaction of elastic waves with a penny-shaped crack. Int. J. Eng. Sci. 8(5), 381–388 (1970)

    Article  MATH  Google Scholar 

  11. Mal A.K.: Interaction of elastic waves with a griffith crack. Int. J. Eng. Sci. 8(9), 763–776 (1970)

    Article  MATH  Google Scholar 

  12. Qu J.: Low frequency scattering by a planer crack. Rev. Progr. QNDE 9, 61–68 (1990)

    Google Scholar 

  13. Eriksson A.S., Boström A., Datta S.K.: Ultrasonic wave propagation through a cracked solid. Wave Motion 22(3), 297–310 (1995)

    Article  MATH  Google Scholar 

  14. Gross D., Zhang C.: Wave propagation in damaged solids. Int. J. Solids Struct. 29(14), 1763–1779 (1992)

    Article  MATH  Google Scholar 

  15. Itou S.: Three-dimensional wave propagation in a cracked elastic solid. J. Appl. Mech. 45(4), 807–811 (1978)

    Article  MATH  Google Scholar 

  16. Kikuchi M.: Dispersion and attenuation of elastic waves due to multiple scattering from cracks. Phys. Earth Planet. Inter. 27(2), 100–105 (1981)

    Article  Google Scholar 

  17. Kikuchi M.: Dispersion and attenuation of elastic waves due to multiple scattering from inclusions. Phys. Earth Planet. Inter. 25(2), 159–162 (1981)

    Article  Google Scholar 

  18. Zhang C., Gross D.: Wave attenuation and dispersion in randomly cracked solids. 1. Slit cracks. Int. J. Eng. Sci. 31(6), 841–858 (1993)

    Article  MATH  Google Scholar 

  19. Zhang C., Gross D.: Wave attenuation and dispersion in randomly cracked solids. 2. Penny-shaped cracks. Int. J. Eng. Sci. 31(6), 859–872 (1993)

    Article  MATH  Google Scholar 

  20. Smyshlyaev V.P., Willis J.R., Sabina F.J.: Self-consistent analysis of waves in a matrix-inclusion composite. 3. A matrix containing cracks. J. Mech. Phys. Solids 41(12), 1809–1824 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Smyshlyaev V.P., Willis J.R., Sabina F.J.: Self-consistent analysis of waves in a matrix-inclusion composite. 2. Randomly oriented spheroidal inclusions. J. Mech. Phys. Solids 41(10), 1589–1598 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sabina F.J., Willis J.R.: Self-consistent analysis of waves in a polycrystalline medium. Eur. J. Mech. A-Solids 12(2), 265–275 (1993)

    MATH  Google Scholar 

  23. Kim J.Y.: Dynamic self-consistent analysis for elastic wave propagation in fiber reinforced composites. J. Acoust. Soc. Am. 100(4), 2002–2010 (1996)

    Article  Google Scholar 

  24. Richardson J.M.: Harmonic generation at an unbonded interface—I. Planar interface between semi-infinite elastic media. Int. J. Eng. Sci. 17(1), 73–85 (1979)

    Article  MATH  Google Scholar 

  25. Biwa S., Hiraiwa S., Matsumoto E.: Experimental and theoretical study of harmonic generation at contacting interface. Ultrasonics 44, e1319–e1322 (2006)

    Article  Google Scholar 

  26. Biwa S., Nakajima S., Ohno N.: On the acoustic nonlinearity of solid–solid contact with pressure-dependent interface stiffness. J. Appl. Mech. 71(4), 508–515 (2004)

    Article  MATH  Google Scholar 

  27. Blanloeuil P., Meziane A., Bacon C.: Numerical study of nonlinear interaction between a crack and elastic waves under an oblique incidence. Wave Motion 51(3), 425–437 (2014)

    Article  MathSciNet  Google Scholar 

  28. Hirose S., Achenbach J.D.: Higher harmonics in the far field due to dynamic crack-face contacting. J. Acoust. Soc. Am. 93(1), 142–147 (1993)

    Article  Google Scholar 

  29. Kimoto K., Ichikawa Y.: A finite difference method for elastic wave scattering by a planar crack with contacting faces. Wave Motion 52, 120–137 (2015)

    Article  MathSciNet  Google Scholar 

  30. Len K.S., Severin F., Solodov I.: Experimental observation of the influence of contact nonlinearity on the reflection of bulk acoustic waves and the propagation of surface acoustic waves. Sov. Phys. Acoust. 37(6), 610–612 (1991)

    Google Scholar 

  31. Nazarov V.E., Sutin A.M.: Nonlinear elastic constants of solids with cracks. J. Acoust. Soc. Am. 102(6), 3349–3354 (1997)

    Article  Google Scholar 

  32. Pecorari C.: Nonlinear interaction of plane ultrasonic waves with an interface between rough surfaces in contact. J. Acoust. Soc. Am. 113(6), 3065–3072 (2003)

    Article  Google Scholar 

  33. Rudenko O., Uv C.A.: Nonlinear acoustic properties of a rough surface contact and acoustiodiagnostics of a roughness height distribution. Acoust. Phys. 40, 593–596 (1994)

    Google Scholar 

  34. Smyshlyaev V., Willis J.: Linear and nonlinear scattering of elastic waves by microcracks. J. Mech. Phys. Solids 42(4), 585–610 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Solodov I.Y.: Acoustic nonlinearity of a piezoelectric crystal surface. J. Appl. Phys. 64(6), 2901–2906 (1988)

    Article  Google Scholar 

  36. Smyshlyaev V., Willis J.: Effective relations for nonlinear dynamics of cracked solids. J. Mech. Phys. Solids 44(1), 49–75 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhao Y. et al.: Frequency-dependent tensile and compressive effective moduli of elastic solids with randomly distributed two-dimensional microcracks. J. Appl. Mech. 82, 081006-1 (2015)

    Article  Google Scholar 

  38. Chen Z. et al.: Mixing of collinear plane wave pulses in elastic solids with quadratic nonlinearity. J. Acoust. Soc. Am. 136(5), 2389–2404 (2014)

    Article  Google Scholar 

  39. Jacobs L. et al.: Using nonlinear ultrasound to measure microstructural changes due to radiation damage in steel. J. Acoust. Soc. Am. 135(4), 2274–2274 (2014)

    Article  Google Scholar 

  40. Matlack K.H. et al.: Sensitivity of ultrasonic nonlinearity to irradiated, annealed, and re-irradiated microstructure changes in RPV steels. J. Nucl. Mater. 448(1–3), 26–32 (2014)

    Article  Google Scholar 

  41. Morlock M.B. et al.: Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material. J. Acoust. Soc. Am. 137(1), 281–292 (2015)

    Article  Google Scholar 

  42. Tang G. et al.: Detecting localized plastic strain by a scanning collinear wave mixing method. J. Nondestruct. Eval. 33(2), 196–204 (2014)

    Article  Google Scholar 

  43. Zeitvogel D.T. et al.: Characterization of stress corrosion cracking in carbon steel using nonlinear Rayleigh surface waves. NDT&E Int. 62, 144–152 (2014)

    Article  Google Scholar 

  44. Smyshlyaev V.P., Willis J.R.: Linear and nonlinear scattering of elastic waves by microcracks. J. Mech. Phys. Solids 42(4), 585–610 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  45. Qu J., Cherkaoui M.: Fundamentals of Micromechanics of Solids. Wiley, Hoboken (2006)

    Book  Google Scholar 

  46. Krajcinovic D.: Damage Mechanics. Elsevier, Dordrecht (1996)

    Google Scholar 

  47. Angel Y.C., Koba Y.K.: Complex-valued wave number, reflection and transmission in an elastic solid containing a cracked slab region. Int. J. Solids Struct. 35(7–8), 573–592 (1998)

    Article  MATH  Google Scholar 

  48. Roy A.: Diffraction of elastic waves by an elliptic crack. Int. J. Eng. Sci. 22(6), 729–739 (1984)

    Article  MATH  Google Scholar 

  49. Roy A.: Diffraction of elastic waves by an elliptic crack—II. Int. J. Eng. Sci. 25(2), 155–169 (1987)

    Article  MATH  Google Scholar 

  50. Qu, J.: Backscattering from flaws in fiber–reinforced composites. In: Theoretical and Applied Mechanics. Doctoral dissertation, Northwestern University (1987)

  51. Willis J.: The stress field around an elliptical crack in an anisotropic elastic medium. Int. J. Eng. Sci. 6(5), 253–263 (1968)

    Article  MATH  Google Scholar 

  52. Sekine H., Mura T.: Elastic field around an elliptical crack in an anisotropic medium under an applied stress of polynomial forms. Int. J. Eng. Sci. 17(5), 641–649 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  53. Qu J.M., Xue Y.B.: Three-dimensional interface cracks in anisotropic bimaterials: the non-oscillatory case. J. Appl. Mech.-Trans. ASME 65(4), 1048–1055 (1998)

    Article  Google Scholar 

  54. Willis J.: The penny-shaped crack on an interface. Q. J. Mech. Appl. Math. 25(3), 367–385 (1972)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Qiu, Y., Jacobs, L.J. et al. Frequency-dependent tensile and compressive effective moduli of elastic solids with distributed penny-shaped microcracks. Acta Mech 227, 399–419 (2016). https://doi.org/10.1007/s00707-015-1450-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1450-z

Keywords

Navigation