Skip to main content
Log in

Detecting Localized Plastic Strain by a Scanning Collinear Wave Mixing Method

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

When the frequencies of a pair of collinear shear and longitudinal waves satisfy the resonant condition, mixing of these two primary waves generates a third, resonant shear wave that propagates in the direction opposite to the propagating direction of the primary shear wave. In this study, experiments were conducted to demonstrate that the acoustic nonlinearity parameter at the location of the mixing zone can be obtained by measuring the resonant shear wave. Since the location of the mixing zone can be controlled by adjusting the trigger time of the transducers that generate the primary waves, this collinear wave mixing technique enables the scanning of a bar sample to measure the distribution of acoustic nonlinearity along the bar. To demonstrate this scanning capability, bar samples with non-uniform acoustic nonlinearity parameters were fabricated by inducing localized plastic deformation at known locations. Scanning collinear wave mixing tests conducted on such bar samples clearly identified the locations of the plastic zone. These results show that collinear wave mixing is a promising method for scanning the test sample to map out the distribution of localized plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lamb, H.: Dynamical Theory of Sound, pp. 177–185. Edward Arnold and Company, London (1925)

    MATH  Google Scholar 

  2. Keck, W., Beyer, R.T.: Frequency spectrum of finite amplitude ultrasonic waves in liquids. Phys. Fluids 3(3), 346–352 (1960)

    Article  MathSciNet  Google Scholar 

  3. Breazeale, M.A., Thompson, D.O.: Finite-Amplitude Ultrasonic Waves in Aluminum. Appl. Phys. Lett. 3(5), 77–78 (1963)

    Article  Google Scholar 

  4. Thurston, R.N., Shapiro, M.J.: Interpretation of ultrasonic experiments on finite-amplitude waves. J. Acoust. Soc. Am. 41(4p2), 1112–1125 (1967)

    Article  Google Scholar 

  5. Thompson, R.B., Buck, O., Thompson, D.O.: Higher harmonics of finite-amplitude ultrasonic-waves in solids. J. Acoust. Soc. Am. 59(5), 1087–1094 (1976)

    Article  Google Scholar 

  6. Thompson, R.B., Tiersten, H.F.: Harmonic-generation of longitudinal elastic-waves. J. Acoust. Soc. Am. 62(1), 33–37 (1977)

    Article  MATH  Google Scholar 

  7. Cantrell Jr, J.H.: Acoustic-radiation stress in solids. I. Theory. Phys. Rev. B 30(6), 3214–3220 (1984)

    Article  Google Scholar 

  8. Cantrell, J.H.: Fundamentals and applications of nonlinear ultrasonic nondestructive evaluation. In: Kundu, T. (ed.) Ultrasonic Nde for Engineering and Biological Material Characterization, pp. 311–362. CRC, Boca Raton (2004)

    Google Scholar 

  9. Hikata, A., Chick, B.B., Elbaum, C.: Dislocation contribution to the second harmonic generation of ultrasonic waves. J. Appl. Phys. 36, 229–236 (1965)

    Article  Google Scholar 

  10. Kim, J.Y., Qu, J., Jacobs, L.J., Littles, J.W., Savage, M.F.: Acoustic nonlinearity parameter due to microplasticity. J. Nondestruct. Eval. 25, 28–36 (2006)

    Article  Google Scholar 

  11. Hikata, A., Elbaum, C.: Generation of ultrasonic second and third harmonics due to dislocations I. Phys. Rev. 144, 469–477 (1966)

    Article  Google Scholar 

  12. Hikata, A., Sewell, F.A., Elbdum, C.: Generation of ultrasonic second and third harmonics due to dislocations Ii. Phys. Rev. 151, 442–449 (1966)

    Article  Google Scholar 

  13. Suzuki, T., Hikata, A., Elbaum, C.: Anharmonicity due to glide motion of dislocations. J. Appl. Phys. 35, 2761–2766 (1964)

    Article  MATH  Google Scholar 

  14. Herrmann, J., Kim, J.Y., Jacobs, L.J., Qu, J., Littles, J.W., Savage, M.: Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves. J. Appl. Phys. 99, 124913 (2006)

    Article  Google Scholar 

  15. Kim, J.Y., Jacobs, L.J., Qu, J., Littles, J.W.: Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 120, 1266–1273 (2006)

    Article  Google Scholar 

  16. Bermes, C., Kim, J.Y., Qu, J., Jacobs, L.J.: Experimental characterization of material nonlinearity using lamb waves. Appl. Phys. Lett. 90(2), 021901 (2007)

    Article  Google Scholar 

  17. Pruell, C., Kim, J.Y., Qu, J., Jacobs, L.J.: Evaluation of plasticity driven material damage using lamb waves. Appl. Phys. Lett. 91(23), 231911 (2007)

    Article  Google Scholar 

  18. Bermes, C., Kim, J.Y., Qu, J., Jacobs, L.J.: Nonlinear lamb waves for the detection of material nonlinearity. Mech. Syst. Signal Process. 22(3), 638–646 (2008)

    Article  Google Scholar 

  19. Liu, M., Kim, J.Y., Jacobs, L.J., Qu, J.: Experimental study of nonlinear Rayleigh wave propagation in shot-peened aluminum plates-feasibility of measuring residual stress. Ndt E Int. 44(1), 67–74 (2011)

    Article  Google Scholar 

  20. Littles Jr, J.W., Jacobs, L.J., Qu, J.: Experimental and theoretical investigation of scattering from a distribution of cracks. Ultrasonics 33(1), 37–43 (1995)

    Article  Google Scholar 

  21. Rollins, F.R.: Interaction of ultrasonic waves in solid media. Appl. Phys. Lett. 2(8), 147–148 (1963)

    Google Scholar 

  22. Rollins, F.R., Todd, P.H., Taylor, L.H.: Ultrasonic study of 3-phonon interactions. 2. Experimental results. Phys. Rev. 136(3A), A597–A601 (1964)

    Article  Google Scholar 

  23. Taylor, L.H., Rollins, F.R.: Ultrasonic study of 3-phonon interactions. I. Theory. Phys. Rev. 136(3A), A591–A596 (1964)

    Article  Google Scholar 

  24. Croxford, A.J., Wilcox, P.D., Drinkwater, B.W., Nagy, P.B.: The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J. Acoust. Soc. Am. 126(5), El117–El122 (2009)

    Google Scholar 

  25. Jones, G.L., Korbett, D.R.: Interaction of elastic waves in an isotropic solid. J. Acoust. Soc. Am. 35(1), 5–10 (1963)

    Article  Google Scholar 

  26. Liu, M., Tang, G., Jacobs, L.J., Qu, J.: Measuring acoustic nonlinearity parameter using collinear wave mixing. J. Appl. Phys. 112, 024908 (2012)

    Article  Google Scholar 

  27. Dudley, R.A., Edwards, P., Ekins, R.P., Finney, D.J., McKenzie, I.G.M., Raab, G.M., Rodbard, D., Rodgers, R.P.C.: Guidelines for immunoassay data processing. Clin. Chem. 31, 1264–1271 (1985)

    Google Scholar 

Download references

Acknowledgments

The research was supported in part by the US DoE Nuclear Energy University Program through contracts 00127346 and 00126931.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, G., Liu, M., Jacobs, L.J. et al. Detecting Localized Plastic Strain by a Scanning Collinear Wave Mixing Method. J Nondestruct Eval 33, 196–204 (2014). https://doi.org/10.1007/s10921-014-0224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-014-0224-1

Keywords

Navigation