Skip to main content
Log in

Moving Dugdale crack along the interface of two dissimilar magnetoelectroelastic materials

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the concept of Dugdale crack model and Yoffe model is extended to propose a moving Dugdale interfacial crack model, and the interfacial crack between dissimilar magnetoelectroelastic materials under anti-plane shear and in-plane electric and magnetic loadings is investigated considering the magneto-electro-mechanical nonlinearity. It is assumed that the constant moving crack is magneto-electrically permeable and the length of the crack keeps constant. Fourier transform is applied to reduce the mixed boundary value problem of the crack to dual integral equations, which are solved exactly. The explicit expression of the size of the yield zone is derived, and the crack sliding displacement (CSD) is explicitly expressed. The result shows that the stress, electric and magnetic fields in the cracked magnetoelectroelastic material are no longer singular and the CSD is dependent on the loading, material properties and crack moving velocity. The current model can be reduced to the static interfacial crack case when the crack moving velocity is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alshits V.I., Darinskii A.N., Lothe J.: On the existence of surface-waves in half-infinite anisotropic elastic media with piezoelectric and piezomagnetic properties. Wave Motion 16, 265–283 (1992)

    Article  MATH  Google Scholar 

  2. Zhao M., Fan C.: Strip electric–magnetic breakdown model in a magnetoelectroelastic medium. J. Mech. Phys. Solids 56, 3441–3458 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gao C.F., Tong P., Zhang T.Y.: Interfacial crack problems in magneto-electroelastic solids. Int. J. Eng. Sci. 41, 2105–2121 (2003)

    Article  Google Scholar 

  4. Hu K.Q., Kang Y.L., Li G.Q.: Moving crack at the interface between two dissimilar magnetoelectroelastic materials. Acta Mech. 182, 1–16 (2006)

    Article  MATH  Google Scholar 

  5. Li R., Kardomateas G.A.: The mixed mode I and II interface crack in piezoelectromagneto–elastic anisotropic bimaterials. ASME J. Appl. Mech. 74, 614–627 (2007)

    Article  Google Scholar 

  6. Hu K.Q., Chen Z.T.: An interface crack moving between magnetoelectroelastic and functionally graded elastic layers. Appl. Math. Model. 38, 910–925 (2014)

    Article  MathSciNet  Google Scholar 

  7. Hu K.Q., Chen Z.T., Fu J.W.: Dynamic analysis of an interface crack between magnetoelectroelastic and functionally graded elastic layers under anti-plane mechanical and in-plane electro-magnetic loadings. Compos. Struct. 107, 142–148 (2014)

    Article  Google Scholar 

  8. Li X.F.: Dynamic analysis of a cracked magnetoelectroelastic medium under antiplane mechanical and inplane electric and magnetic impacts. Int. J. Solids Struct. 42, 3185–3205 (2005)

    Article  MATH  Google Scholar 

  9. Feng W.J., Pan E., Wang X.: Dynamic fracture analysis of a penny-shaped crack in a magnetoelectroelastic layer. Int. J. Solids Struct. 44, 7955–7974 (2007)

    Article  MATH  Google Scholar 

  10. Hu K.Q., Chen Z.T.: Pre-curving analysis of an opening crack in a magnetoelectroelastic strip under in-plane impact loadings. J. Appl. Phys. 112, 124911 (2012)

    Article  Google Scholar 

  11. Hu K.Q., Chen Z.T.: Dynamic response of a cracked magnetoelectroelastic layer sandwiched between two elastic layers. Z. Angew. Math. Mech. 93, 676–687 (2013)

    Article  MATH  Google Scholar 

  12. Hu K.Q., Chen Z.T.: Pre-kinking of a moving crack in a magnetoelectroelastic material under in-plane loading. Int. J. Solids Struct. 50, 2667–2677 (2013)

    Article  Google Scholar 

  13. Yoffe E.H.: The moving Griffith crack. Philos. Mag. 42, 739–750 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  14. Freund L.B.: Crack propagation in an elastic solid subjected to general loading—I. Constant rate of extension. J. Mech. Phys. Solids 20, 129–140 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  15. Yang W., Suo Z., Shih C.F.: Mechanics of dynamic debonding. Proc. R. Soc. A Math. Phy. 433, 679–697 (1991)

    Article  MATH  Google Scholar 

  16. Chen Z.T., Karihaloo B.L., Yu S.W.: A Griffith crack moving along the interface of two dissimilar piezoelectric materials. Int. J. Fract. 91, 197–203 (1998)

    Article  Google Scholar 

  17. Li C., Weng G.: Yoffe-type moving crack in a functionally graded piezoelectric material. Proc. R. Soc. Lond. A Math. 458, 381–399 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Soh A.K., Liu J.X., Lee K.L., Fang D.N.: On a moving Griffith crack in anisotropic piezoelectric solids. Arch. Appl. Mech. 72, 458–469 (2002)

    Article  MATH  Google Scholar 

  19. Wang X., Zhong Z., Wu F.L.: A moving conducting crack at the interface of two dissimilar piezoelectric materials. Int. J. Solids Struct. 40, 2381–2399 (2003)

    Article  MATH  Google Scholar 

  20. Hu K.Q., Chen Z.T., Zhong Z.: Pre-kinking analysis of a constant moving crack in a magnetoelectroelastic strip under in-plane loading. Eur. J. Mech. A Solids 43, 25–43 (2014)

    Article  MathSciNet  Google Scholar 

  21. Dugdale D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)

    Article  Google Scholar 

  22. Fan T.Y.: Moving Dugdale model. Z. Angew. Math. Phys. 38, 630–641 (1987)

    Article  MATH  Google Scholar 

  23. Gao H.J., Zhang T.Y., Tong P.: Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491–510 (1997)

    Article  Google Scholar 

  24. Narita F., Shindo Y.: Fatigue crack propagation in a piezoelectric ceramic strip subjected to mode III loading. Acta Mech. 137, 55–63 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li S.: On saturation-strip model of a permeable crack in a piezoelectric ceramic. Acta Mech. 165, 47–71 (2003)

    Article  MATH  Google Scholar 

  26. Zhang T.Y., Zhao M.H., Gao C.F.: The strip dielectric breakdown model. Int. J. Fract. 132, 311–327 (2005)

    Article  MATH  Google Scholar 

  27. Fan C.Y., Zhao Y.F., Zhao M.H., Pan E.N.A.: Analytical solution of a semi-permeable crack in a 2D piezoelectric medium based on the PS model. Mech. Res. Commun. 40, 34–40 (2012)

    Article  Google Scholar 

  28. Wang B.L., Zhang X.H.: An electrical field based non-linear model in the fracture of piezoelectric ceramics. Int. J. Solids Struct. 41, 4337–4347 (2004)

    Article  MATH  Google Scholar 

  29. Hu K.Q., Li G.Q.: Constant moving crack in a magnetoelectroelastic material under anti-plane shear loading. Int. J. Solids Struct. 42, 2823–2835 (2005)

    Article  MATH  Google Scholar 

  30. Wang B.L., Mai Y.W.: Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials. Int. J. Solids Struct. 44, 387–398 (2007)

    Article  MATH  Google Scholar 

  31. Gao C.F., Tong P., Zhang T.Y.: Fracture mechanics for a mode III crack in a magnetoelectroelastic solid. Int. J. Solids Struct. 41, 6613–6629 (2004)

    Article  MATH  Google Scholar 

  32. Zhou Z., Chen Z.: Fracture mechanics analysis of a partially conducting mode I crack in piezoelectromagnetic materials. Eur. J. Mech. A Solid 27, 824–846 (2008)

    Article  MATH  Google Scholar 

  33. Sladek J., Sladek V., Zhang C.Z., Wunsche M.: Semi-permeable crack analysis in magnetoelectroelastic solids. Smart Mater. Struct. 21, 025003 (2012)

    Article  Google Scholar 

  34. Copson E.: On certain dual integral equations. Proc. Glasg. Math. Assoc. 5, 21–24 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  35. Gradshteyn I.S., Ryzhik R.M.: Table of Integrals, Series, and Products. Academic Press, Amsterdam (2007)

    MATH  Google Scholar 

  36. Fang D.N., Zhang Z.K., Soh A.K., Lee K.L.: Fracture criteria of piezoelectric ceramics with defects. Mech. Mater. 36, 917–928 (2004)

    Article  Google Scholar 

  37. Huang J.H., Chiu Y.H., Liu H.K.: Magneto-electro-elastic Eshelby tensors for a piezoelectric–piezomagnetic composite reinforced by ellipsoidal inclusions. J. Appl. Phys. 83, 5364–5370 (1998)

    Article  Google Scholar 

  38. Li R., Kardomateas G.A.: The mode III interface crack in piezo-electro-magneto-elastic dissimilar biomaterials. ASME J. Appl. Mech. 73, 220–227 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keqiang Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Chen, Z. & Fu, J. Moving Dugdale crack along the interface of two dissimilar magnetoelectroelastic materials. Acta Mech 226, 2065–2076 (2015). https://doi.org/10.1007/s00707-015-1298-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1298-2

Keywords

Navigation