Skip to main content
Log in

Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this article, we investigate the effect of carbon nanotube (CNT) waviness on the active constrained layer damping (ACLD) of the laminated hybrid composite shells. In particular, the effect of CNT waviness has been studied for the case of a novel nano-tailored composite—continuous fuzzy fiber-reinforced composite (FFRC). The distinctive feature of the construction of the FFRC is that the uniformly spaced straight or wavy CNTs are radially grown on the circumferential surfaces of carbon fibers. The constraining layer of the ACLD treatment is considered to be made of vertically or obliquely reinforced 1–3 piezoelectric composite material. A three-dimensional finite element model has been developed to study the damping characteristics of the laminated FFRC shells integrated with the patches of ACLD treatment. Our results reveal that (i) the planar orientation of CNT waviness has a significant influence on the damping characteristics of the laminated FFRC shells, (ii) damping characteristics of the symmetric cross-ply, and antisymmetric angle-ply laminated FFRC shells are improved if CNT waviness is coplanar with the longitudinal plane of the carbon fiber, and (iii) for the antisymmetric cross-ply laminated FFRC shells, the performance of the ACLD patches becomes maximum for attenuating the fundamental mode when CNT waviness is coplanar with the transverse plane of the carbon fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thostenson E.T., Chou T.W.: On the elastic properties of carbon nanotube-based composites: modelling and characterization. J. Phys. D Appl. Phys. 36, 573–582 (2003). doi:10.1088/0022-3727/36/5/323

    Article  Google Scholar 

  2. Odegard G.M., Gates T.S., Wise K.E., Park C., Siochi E.J.: Constitutive modeling of nanotube-reinforced polymer composites. Compos. Sci. Technol. 63, 1671–1687 (2003). doi:10.1016/S0266-3538(03)00063-0

    Article  Google Scholar 

  3. Lopez Manchado M.A., Valentini L., Biagiotti J., Kenny J.M.: Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon 43, 1499–1505 (2005). doi:10.1016/j.carbon.2005.01.031

    Article  Google Scholar 

  4. Seidel G.D., Lagoudas D.C.: Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38, 884–907 (2006). doi:10.1016/j.mechmat.2005.06.029

    Article  Google Scholar 

  5. Meguid S.A., Wernik J.M., Cheng Z.Q.: Atomistic-based continuum representation of the effective properties of nano-reinforced epoxies. Int. J. Solids Struct. 47, 1723–1736 (2010). doi:10.1016/j.ijsolstr.2010.03.009

    Article  MATH  Google Scholar 

  6. Wernik J.M., Meguid S.A.: Recent developments in multifunctional nanocomposites using carbon nanotubes. ASME Appl. Mech. Rev. 63, 050801 (2010). doi:10.1115/1.4003503

    Article  Google Scholar 

  7. Wernik J.M., Meguid S.A.: Multiscale modeling of the nonlinear response of nano-reinforced polymers. Acta Mech. 217, 1–16 (2011). doi:10.1007/s00707-010-0377-7

    Article  MATH  Google Scholar 

  8. Pan Y., Weng G.J., Meguid S.A., Bao W.S., Zhu Z.H., Hamouda A.M.S.: Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites. Mech. Mater. 58, 1–11 (2013). doi:10.1016/j.mechmat.2012.10.015

    Article  Google Scholar 

  9. Garcia E.J., Wardle B.L., Hart A.J., Yamamoto N.: Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in Situ. Compos. Sci. Technol. 68, 2034–2041 (2008). doi:10.1016/j.compscitech.2008.02.028

    Article  Google Scholar 

  10. Garcia E.J., Hart A.J., Wardle B.L.: Long carbon nanotubes grown on the surface of fibers for hybrid composites. AIAA J. 46, 1405–1412 (2008). doi:10.2514/1.25004

    Article  Google Scholar 

  11. Kundalwal S.I., Ray M.C.: Shear lag analysis of a novel short fuzzy fiber-reinforced composite. Acta Mech. 225, 2621–2643 (2014). doi:10.1007/s00707-014-1095-3

    Article  MATH  MathSciNet  Google Scholar 

  12. Yamamoto, N., Wicks, S.S., De Villoria, R.G., Ishiguro, K., Steiner, III, S.A., Garcia, E.J., Wardle, B.L.: Mechanical, thermal, and electrical properties of woven laminated advanced composites containing aligned carbon nanotubes. In: 17th International Conference on Composite Materials, Edinburgh, Scotland, 27–31 July 2009

  13. Veedu V.P., Cao A., Li X., Ma K., Soldano C., Kar S., Ajayan P.M., Ghasemi-Nejhad M.N.: Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat. Mater. 5, 457–462 (2006). doi:10.1038/nmat1650

    Article  Google Scholar 

  14. Yamamoto N., Hart A.J., Garcia E.J., Wicks S.S., Duong H.M., Slocum A.H., Wardle B.L.: High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibers for multifunctional enhancement of structural composites. Carbon 47, 551–560 (2009). doi:10.1088/0957-4484/20/40/405611

    Article  Google Scholar 

  15. Kundalwal S.I., Ray M.C.: Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method. Eur. J. Mech. A Solids 36, 191–203 (2012). doi:10.1016/j.euromechsol.2012.03.006

    Article  Google Scholar 

  16. Kundalwal S.I., Ray M.C.: Effect of carbon nanotube waviness on the elastic properties of the fuzzy fiber reinforced composites. ASME J. Appl. Mech. 80, 021010 (2013). doi:10.1115/1.4007722

    Article  Google Scholar 

  17. Kundalwal S.I., Ray M.C.: Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite. Compos. B Eng. 80, 199–209 (2014). doi:10.1016/j.compositesb.2013.10.003

    Article  Google Scholar 

  18. Gandhi M.V., Thompson B.S.: Smart Materials and Structures. Chapman and Hall, London (1992)

    Google Scholar 

  19. Hwang W.S., Park H.C.: Finite element modeling of piezoelectric sensors and actuators. AIAAJ 31, 930–793 (1993). doi:10.2514/3.11707

  20. Lam K.Y., Ng T.Y.: Active control of composite plates with integrated piezoelectric sensors and actuators under various dynamic loading conditions. Smart Mater. Struct. 8, 223–237 (1999). doi:10.1088/0964-1726/8/2/008

    Article  Google Scholar 

  21. Wang X.D., Meguid S.A.: On the electroelastic behavior of a thin piezoelectric actuator attached to an infinite host structure. Int. J. Solids Struct. 37, 3231–3251 (2000). doi:10.1016/S0020-7683(99)00118-3

    Article  MATH  Google Scholar 

  22. Birman V., Griffin S., Knowles G.: Axisymmetric dynamics of composite spherical shells with active piezoelectric/composite stiffeners. Acta Mech. 141, 71–83 (2000). doi:10.1007/BF01176808

    Article  MATH  Google Scholar 

  23. Ray M.C., Oh J., Baz A.: Active constrained layer damping of~thin cylindrical shells. J. Sound Vib. 240, 921–935 (2001). doi:10.1006/jsvi.2000.3287

    Article  Google Scholar 

  24. Ray M.C., Mallik N.: Finite element analysis of smart structures containing fiber-reinforced composite actuator. AIAA J. 42, 1398–1405 (2004). doi:10.2514/1.4030

    Article  Google Scholar 

  25. Ray M.C., Mallik N.: Performance of smart damping treatment~using piezoelectric fiber-reinforced composites. AIAA J. 43, 184–193 (2005). doi:10.2514/1.7552

    Article  Google Scholar 

  26. Zhang Y.H., Xie S.L., Zhang X.N.: Vibration control of a simply supported cylindrical shell using a laminated piezoelectric actuator. Acta Mech. 196, 87–101 (2008). doi:10.1007/s00707-007-0501-5

    Article  MATH  Google Scholar 

  27. Ray M.C., Pradhan A.K.: Performance of vertically and obliquely reinforced 1–3 piezoelectric composites for active damping of laminated composite shells. J. Sound Vib. 315, 816–835 (2008). doi:10.1016/j.jsv.2008.02.012

    Article  Google Scholar 

  28. Ray M.C., Pradhan A.K.: Active damping of laminated thin cylindrical composite panels using vertically/obliquely reinforced 1–3 piezoelectric composites. Acta Mech. 209, 201–218 (2009). doi:10.1007/s00707-009-0149-4

    Article  Google Scholar 

  29. Suresh Kumar R., Ray M.C.: Active constrained layer damping of smart laminated composite sandwich plates using 1–3 piezoelectric composites. Int. J. Mech. Mater. Des. 8, 197–218 (2012). doi:10.1007/s10999-012-9186-6

    Article  Google Scholar 

  30. Suresh Kumar R., Ray M.C.: Active constrained layer damping of geometrically nonlinear vibrations of smart laminated composite sandwich plates using 1–3 piezoelectric composites. Int. J. Mech. Mater. Des. 8, 359–380 (2012). doi:10.1007/s10999-012-9201-y

    Article  Google Scholar 

  31. Ramaratnam A., Jalili N.: Reinforcement of piezoelectric polymers with carbon nanotubes: pathway to next-generation sensors. J. Intell. Mater. Syst. Struct. 17, 199–208 (2006). doi:10.1177/1045389X06055282

    Article  Google Scholar 

  32. Ray M.C., Batra R.C.: A single-walled carbon nanotube reinforced 1–3 piezoelectric composite for active control of smart structures. Smart Mater. Struct. 16, 1936–1947 (2007). doi:10.1088/0964-1726/16/5/051

    Article  Google Scholar 

  33. Zhu P., Lei Z.X., Liew K.M.: Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 94, 1450–1460 (2012). doi:10.1016/j.compstruct.2011.11.010

    Article  Google Scholar 

  34. Alibeigloo A.: Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity. Compos. Struct. 95, 612–622 (2013). doi:10.1016/j.compstruct.2012.08.018

    Article  Google Scholar 

  35. Kundalwal S.I., Suresh Kumar R., Ray M.C.: Smart damping of laminated fuzzy fiber reinforced composite shells using 1–3 piezoelectric composites. Smart Mater. Struct. 22, 105001 (2013). doi:10.1088/0964-1726/22/10/105001

    Article  Google Scholar 

  36. Cao A., Dickrell P.L., Sawyer W.G., Ghasemi-Nejhad M.N., Ajayan P.M.: Super-compressible foamlike carbon nanotube films. Science 310, 1307–1310 (2005). doi:10.1126/science.1118957

    Article  Google Scholar 

  37. Fisher F.T., Bradshaw R.D., Brinson L.C.: Effects of nanotube waviness on the modulus of nanotube-reinforced polymers. Appl. Phys. Lett. 80, 4647–4649 (2002). doi:10.1063/1.1487900

    Article  Google Scholar 

  38. Berhan L., Yi Y.B., Sastry A.M.: Effect of nanorope waviness on the effective moduli of nanotube sheets. J. Appl. Phys. 95, 5027–5034 (2004). doi:10.1063/1.1687989

    Article  Google Scholar 

  39. Handlin D., Stein I.Y., de Villoria R.G., Cebeci H., Parsons E.M., Socrate S., Scotti S., Wardle B.L.: Three-dimensional elastic constitutive relations of aligned carbon nanotube architectures. J. Appl. Phys. 114, 224310 (2013). doi:10.1063/1.4842117

    Article  Google Scholar 

  40. Yanase K., Moriyama S., Ju J.W.: Effects of CNT waviness on the effective elastic responses of CNT-reinforced polymer composites. Acta Mech. 224, 1351–1364 (2013). doi:10.1007/s00707-013-0808-3

    Article  MATH  Google Scholar 

  41. Ginga N.J., Chen W., Sitaram S.K.: Waviness reduces the effective modulus of carbon nanotube forests by several orders of magnitude. Carbon 66, 57–66 (2014). doi:10.1016/j.carbon.2013.08.042

    Article  Google Scholar 

  42. Jam J.E., Pourasghar A., Kamarian S.: The effects of the aspect ratio and waviness of CNTs on the vibrational behavior of functionally graded nanocomposite cylindrical panels. Polym. Compos. 33, 2036–2044 (2012). doi:10.1002/pc.22346

    Article  Google Scholar 

  43. Rokni H., Milani A.S., Seethaler R.J., Stoeffler K.: Improvement in dynamic properties of laminated MWCNT–polystyrene composite beams via an integrated numerical–experimental approach. Compos. Struct. 94, 2538–2547 (2012). doi:10.1016/j.compstruct.2012.03.028

    Article  Google Scholar 

  44. Moradi-Dastjerdi R., Pourasghar A., Foroutan M.: The effects of carbon nanotube orientation and aggregation on vibrational behavior of functionally graded nanocomposite cylinders by a mesh-free method. Acta Mech. 224, 2817–2832 (2013). doi:10.1007/s00707-013-0897-z

    Article  MATH  MathSciNet  Google Scholar 

  45. Baz A., Ro J.: Vibration control of plates with active constrained layer damping. Smart Mater. Struct. 5, 272–280 (1996). doi:10.1088/0964-1726/5/3/005

    Article  Google Scholar 

  46. Ray M.C., Reddy J.N.: Optimal control of thin circular cylindrical shells using active constrained layer damping treatment. Smart Mater. Struct. 13, 64–72 (2004). doi:10.1088/0964-1726/13/1/008

    Article  Google Scholar 

  47. Chantalakhana C., Stanway R.: Active constrained layer damping of clamped–clamped plate vibrations. J. Sound Vib. 241, 755–777 (2001). doi:10.1006/jsvi.2000.3317

    Article  Google Scholar 

  48. Reddy J.N.: Mechanics of Laminated Composites Plates Theory and Analysis. CRC Press, Boca Raton (1996)

    Google Scholar 

  49. Kundalwal, S.I., Ray, M.C.: Smart damping of fuzzy fiber reinforced composite plates using 1–3 piezoelectric composites. J. Vib. Control (2014). doi:10.1177/1077546314543726

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Meguid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundalwal, S.I., Meguid, S.A. Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells. Acta Mech 226, 2035–2052 (2015). https://doi.org/10.1007/s00707-014-1297-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1297-8

Keywords

Navigation