Skip to main content
Log in

A new Timoshenko beam model incorporating microstructure and surface energy effects

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A new Timoshenko beam model is developed using a modified couple stress theory and a surface elasticity theory. A variational formulation based on Hamilton’s principle is employed, which leads to the simultaneous determination of the equations of motion and complete boundary conditions for a Timoshenko beam. The new model contains a material length scale parameter accounting for the microstructure effect in the bulk of the beam and three surface elasticity constants describing the mechanical behavior of the beam surface layer. The inclusion of these additional material constants enables the new model to capture the microstructure-and surface energy-dependent size effect. In addition, both bending and axial deformations are considered, and the Poisson effect is incorporated in the current model, unlike existing Timoshenko beam models. The new beam model includes the models considering only the microstructure dependence or the surface energy effect as limiting cases and recovers the Bernoulli–Euler beam model incorporating the two effects as a special case. Also, the current model reduces to the classical Timoshenko beam model when the microstructure dependence, surface energy and Poisson’s effect are all suppressed. To demonstrate the new model, the static bending and free vibration problems of a simply supported beam are analytically solved by directly applying the general formulas derived. The numerical results for the static bending problem reveal that both the deflection and rotation of the simply supported beam predicted by the new model are smaller than those predicted by the classical Timoshenko beam model. In addition, the differences in both the deflection and rotation predicted by the two models are very large when the beam thickness is small, but they are diminishing with the increase of the beam thickness. Similar trends are observed for the free vibration problem, where it is shown that the natural frequency predicted by the new model is higher than that given by the classical model, with the difference between them being significantly large for very thin beams. These predicted trends of the size effect in beam bending at the micron scale agree with those observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cammarata R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)

    Article  Google Scholar 

  2. Challamel N.: Higher-order shear beam theories and enriched continuum. Mech. Res. Commun. 38, 388–392 (2011)

    Article  MATH  Google Scholar 

  3. Chen J.Y., Huang Y., Ortiz M.: Fracture analysis of cellular materials: a strain gradient model. J. Mech. Phys. Solids 46, 789–828 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ellis R.W., Smith C.W.: A thin-plate analysis and experimental evaluation of couple-stress effects. Exp. Mech. 7, 372–380 (1967)

    Article  Google Scholar 

  5. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  6. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

  7. Gao X.-L.: An expanding cavity model incorporating strain-hardening and indentation size effects. Int. J. Solids Struct. 43, 6615–6629 (2006)

    Article  MATH  Google Scholar 

  8. Gao X.-L., Huang J.X., Reddy J.N.: A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech. 224, 2699–2718 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gao X.-L., Ma H.M.: Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. J. Mech. Phys. Solids 58, 779–797 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gao X.-L., Mall S.: Variational solution for a cracked mosaic model of woven fabric composites. Int. J. Solids Struct. 38, 855–874 (2001)

    Article  MATH  Google Scholar 

  11. Gao X.-L., Mahmoud F.F.: A new Bernoulli–Euler beam model incorporating microstructure and surface energy effects. Z. Angew. Math. Phys. 65, 393–404 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gao X.-L., Park S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44, 7486–7499 (2007)

    Article  MATH  Google Scholar 

  13. Gao X.-L., Zhou S.-S.: Strain gradient solutions of half-space and half-plane contact problems. Z. Angew. Math. Phys. 64, 1363–1386 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    MATH  MathSciNet  Google Scholar 

  15. Gurtin M.E., Murdoch A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  16. Hutchinson J.R.: Shear coefficients for Timoshenko beam theory. ASME J. Appl. Mech. 68, 87–92 (2001)

    Article  MATH  Google Scholar 

  17. Hutchinson J.W.: Plasticity at the micron scale. Int. J. Solids Struct. 37, 225–238 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kaneko T.: On Timoshenko’s correction for shear in vibrating beams. J. Phys. D: Appl. Phys. 8, 1927–1936 (1975)

    Article  Google Scholar 

  19. Lam, D.C.C., Yang, F., Chong, A.C.M.,Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J.Mech. Phys. Solids 51, 1477–1508 (2003)

  20. Lazar M., Maugin G.A., Aifantis E.C.: On a theory of nonlocal elasticity of bi-Helmholtz type and some applications. Int. J. Solids Struct. 43, 1404–1421 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lazar M., Maugin G.A., Aifantis E.C.: On dislocations in a special class of generalized elasticity. Phys. Stat. Sol. (b) 242, 2365–2390 (2005)

    Article  Google Scholar 

  22. Lazopoulos, K.A., Lazopoulos, A.K.: Bending and buckling of thin strain gradient elastic beams. Euro. J. Mech. A/Solids 29, 837–843 (2010)

  23. Lim C.W., He L.H.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int. J. Mech. Sci. 46, 1715–1726 (2004)

    Article  MATH  Google Scholar 

  24. Liu C., Rajapakse R.K.N.D.: Continuum models incorporating surface energy for static and dynamic response of nanoscale beams. IEEE Trans. Nanotech. 9, 422–431 (2010)

    Article  Google Scholar 

  25. Liu C., Rajapakse R.K.N.D., Phani A.S.: Finite element modeling of beams with surface energy effects. ASME J. Appl. Mech. 78, 031014-1–031014-10 (2011)

    Article  Google Scholar 

  26. Lu P., He L.H., Lee H.P., Lu C.: Thin plate theory including surface effects. Int. J. Solids Struct. 43, 4631–4647 (2006)

    Article  MATH  Google Scholar 

  27. Lü C.F., Wu D.Z., Chen W.Q.: Nonlinear responses of nanoscale FGM films including the effects of surface energies. IEEE Trans. Nanotech. 10, 1321–1327 (2011)

  28. Ma H.M., Gao X.-L., Reddy J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ma H.M., Gao X.-L., Reddy J.N.: A non-classical Reddy–Levinson beam model based on a modified couple stress theory. Int. J. Multiscale Comput. Eng. 8, 167–180 (2010)

    Article  Google Scholar 

  30. Ma H.M., Gao X.-L., Reddy J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)

    Article  MATH  Google Scholar 

  31. Mahmoud F.F., Eltaher M.A., Alshorbagy A.E., Meletis E.I.: Static analysis of nanobeams including surface effects by nonlocal finite element. J. Mech. Sci. Tech. 26, 3555–3563 (2012)

    Article  Google Scholar 

  32. Maugin G.A.: A historical perspective of generalized continuum mechanics. In: Altenbach, H., Maugin, G.A., Erofeev, V. (eds.) Mechanics of Generalized Continua, pp. 3–19. Springer, Berlin (2011)

    Chapter  Google Scholar 

  33. McFarland A.W., Colton J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  Google Scholar 

  34. Miller R.E., Shenoy V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  35. Mindlin R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)

    Article  Google Scholar 

  36. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    MATH  MathSciNet  Google Scholar 

  37. Papargyri-Beskou S., Tsepoura K.G., Polyzos D., Beskos D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40, 385–400 (2003)

    Article  MATH  Google Scholar 

  38. Park S.K., Gao X.-L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  39. Park S.K., Gao X.-L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. Angew. Math. Phys. 59, 904–917 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics, 2nd ed. Wiley, New York (2002)

  41. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B. 71, 094104-1–094104-11 (2005)

  42. Steigmann D.J., Ogden R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. Lond. A 453, 853–877 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  43. Steigmann D.J., Ogden R.W.: Elastic surface–substrate interactions. Proc. R. Soc. Lond. A 455, 437–474 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  44. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)

  45. Triantafyllou A., Giannakopoulos A.E.: Structural analysis using a dipolar elastic Timoshenko beam. Euro. J. Mech. A/Solids 39, 218–228 (2013)

    Article  MathSciNet  Google Scholar 

  46. Wang C.M.: Timoshenko beam-bending solutions in terms of Euler–Bernoulli solutions. ASCE J. Eng. Mech. 121, 763–765 (1995)

    Article  Google Scholar 

  47. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

  48. Yang F.Q.: Size dependent effective modulus of elastic composite materials: spherical nanocavities at dilute concentrations. J. Appl. Phys. 95, 3516–3520 (2004)

    Article  Google Scholar 

  49. Zhou S.-S., Gao X.-L.: Solutions of half-space and half-plane contact problems based on surface elasticity. Z. Angew. Math. Phys. 64, 145–166 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  50. Zhou, S.S., Gao, X.-L.: A non-classical model for circular Mindlin plates based on a modified couple stress theory. ASME J. Appl. Mech. 81, 051014-1–051014-8 (2014)

  51. Zhou, S.-S., Gao, X.-L.: Solutions of the generalized half-plane and half-space Cerruti problems with surface effects. Z. angew. Math. Phys. (published online on 16 April 2014). doi:10.1007/s00033-014-0419-4 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-L. Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, XL. A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mech 226, 457–474 (2015). https://doi.org/10.1007/s00707-014-1189-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1189-y

Keywords

Navigation