Skip to main content
Log in

Invariance in non-isothermal generalized plasticity

  • Published:
Acta Mechanica Aims and scope Submit manuscript

An Erratum to this article was published on 11 November 2014

Abstract

Theoretical issues related to the covariant structure of non-isothermal generalized plasticity in large deformations are studied in depth. For this purpose, the tensor analysis on manifolds is utilized and the manifold structure of both the ambient and the state spaces is postulated. Building on this, a covariant structure of the theory is constructed within a strain–space formulation. Thermomechanical loading criteria in both Lagrangian and Eulerian descriptions are derived in a deformation–temperature space. Based on geometrical concepts, classical non-isothermal plasticity is derived as a special case. The invariance properties of the local form of the balance of energy equation are systematically engaged for the derivation of the thermomechanical state equations. It is specifically shown that the local form of the covariant balance of energy equation does not yield the Doyle–Ericksen formula and the standard entropy–temperature constitutive relation, unless a further assumption is made. A derivation of the spatial form of the Duhamel–Neumann hypothesis on a decomposition of the rate of deformation tensor into its mechanical and thermal parts is performed as well. The covariance concept is specialized further by the construction of a material model within the context of classical metal plasticity. The proposed model is tested numerically for the solution of two problems of non-isothermal large-scale plastic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Panoskaltsis, V.P., Polymenakos, L.C., Soldatos, D.: On large deformation generalized plasticity. J. Mech. Mater. Struct. 3, 441–457 (2008)

    Article  Google Scholar 

  2. Lubliner, J.: A simple theory of plasticity. Int. J. Solids Struct. 10, 313–319 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  3. Lubliner, J.: On loading, yield and quasi-yield hypersurfaces in plasticity theory. Int. J. Solids Struct. 11, 1011–1016 (1975)

    Article  MATH  Google Scholar 

  4. Lubliner, J.: An axiomatic model of rate-independent plasticity. Int. J. Solids Struct. 16, 709–713 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lubliner, J.: Normality rules in large-deformation plasticity. Mech. Mater. 5, 29–34 (1986)

    Article  Google Scholar 

  6. Lubliner, J.: Non-isothermal generalized plasticity. In: Bui, H.D., Nyugen, Q.S. (eds.) Thermomechanical Coupling in Solids, pp. 121–133 (1987)

  7. Bishop, R.L., Goldberg, I.: Tensor Analysis on Manifolds. Dover Publications, New York (1980)

    Google Scholar 

  8. Abraham, R.J.E., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis and Applications, 2nd edn. Springer, New York (1988)

    Book  MATH  Google Scholar 

  9. Lovelock, D., Rund, H.: Tensors, Differential Forms and Variational Principles. Dover Publications, New York (1989)

    Google Scholar 

  10. Lee, E.H.: Elastic–plastic deformations at finite strains. J. Appl. Mech. (Trans. ASME) 36, 1–6 (1969)

    Article  MATH  Google Scholar 

  11. Mandel, J.: Thermodynamics and plasticity. In: Domingos, J.J., Nina, M.N.R., Whitelaw, J.H. (eds) Foundations of Continuum Thermodynamics, pp. 283–304. MacMillan, London (1973)

  12. Simo, J.C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and multiplicative decomposition: part I. Continuum formulation. Comput. Methods Appl. Mech. Eng. 66, 199–219 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Le, K.H., Stumpf, H.: Constitutive equations for elastoplastic bodies at finite strain: thermodynamic implementation. Acta Mech. 100, 155–170 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Epstein, M., Epstein, M.: On the geometrical material structure of anelasticity. Acta. Mech. 115, 119–131 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cermelli, P., Fried, E., Sellers, S.: Configurational stress, yield and flow in rate-independent plasticity. Proc. R. Soc. Lond. A 457, 1447–1467 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gurtin, M.E., Anand, L.: The decomposition F e F p, material symmetry, and plastic irrotationality for solids that are isotropic-viscoplastic or amorphous. Int. J. Plast. 21, 1686–1719 (2005)

    Article  MATH  Google Scholar 

  17. Panoskaltsis, V.P., Soldatos, D., Triantafyllou, S.P.: The concept of physical metric in rate-independent generalized plasticity. Acta Mech. 221, 49–64 (2011)

    Article  MATH  Google Scholar 

  18. Valanis, K.C.: The concept of physical metric in thermodynamics. Acta. Mech. 113, 169–184 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Valanis, K.C., Panoskaltsis, V.P.: Material metric, connectivity and dislocations in continua. Acta Mech. 175, 77–103 (2005)

    Article  MATH  Google Scholar 

  20. Brezis, H.: On a characterization of flow-invariant sets. Commun. Pure Appl. Math. XXIII, 261–263 (1970)

  21. Doyle, T.C., Ericksen, J.L.: Nonlinear Elasticity. Advances in Applied Mechanics. Academic Press, New York (1956)

    Google Scholar 

  22. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publications, New York (1994) (original edition by Prentice Hall, 1983)

  23. Stumpf, H., Hoppe, U.: The application of tensor algebra on manifolds to nonlinear continuum mechanics—invited survey article. Z. Angew. Math. Mech. 77, 327–339 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yavari, J., Marsden, J.E., Ortiz, M.: On spatial and material covariant balance laws in elasticity J. Math. Phys. 47, 1–53 (2006)

  25. Simo, J.C., Ortiz, M.: A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comput. Methods Appl. Mech. Eng. 49, 221–245 (1985)

    Article  MATH  Google Scholar 

  26. Miehe, C.: A constitutive frame of elastoplasticity at large strains based on the notion of a plastic metric. Int. J. Solids Struct. 35, 3859–3897 (1998)

    Article  MATH  Google Scholar 

  27. Panoskaltsis, V.P., Polymenakos, L.C., Soldatos, D.: A finite strain model of combined viscoplasticity and rate-independent plasticity without a yield surface. Acta Mech. 224, 2107–2125 (2013)

  28. Duszek, M.K., Perzyna, P.: The localization of plastic deformation in thermoplastic solids. Int. J. Solids Struct. 27, 1419–1443 (1991)

    Article  MATH  Google Scholar 

  29. Slawianowski, J.J., Golubowska, B.: Motion of test bodies with internal degrees of freedom in non-Euclidean spaces. Rep. Math. Phys. 65, 379–422 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Simo, J.C., Marsden, J.E.: On the rotated stress tensor and the material version of the Doyle–Ericksen formula. Arch. Ration. Mech. Anal. 86, 213–231 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  31. Pipkin, C., Rivlin, R.S.: Mechanics of rate-independent materials. Z. Angew. Math. Physik 16, 313–326 (1965)

    Article  MathSciNet  Google Scholar 

  32. Lucchesi, M., Podio-Guidugli, P.: Materials with elastic range: a theory with a view toward applications: part II. Arch. Ration. Mech. Anal. 110, 9–42 (1992)

    Article  MathSciNet  Google Scholar 

  33. Bertram, A.: Finite thermoplasticity based on isomorphisms. Int. J. Plast. 19, 2027–2050 (2003)

    Article  MATH  Google Scholar 

  34. Eisenberg, M.A., Phillips, A.: A theory of plasticity with non-coincident yield and loading surfaces. Acta Mech. 11, 247–260 (1971)

    Article  MATH  Google Scholar 

  35. Lubliner, J.: On the structure of the rate equations of material with internal variables. Acta Mech. 17, 109–119 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  36. Yorke, J.A.: Invariance of ordinary differential equations. Math. Syst. Theory 1, 353–372 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  37. Redheffer, R.M.: The theorems of Bony and Brezis on flow invariant sets. Am. Math. Mon. 79, 740–747 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  38. Martin, R.H.: Differential equations on closed subsets of a Banach space. Trans. Am. Math. Soc. 179, 339–414 (1973)

    Article  Google Scholar 

  39. Koiter, W.T.: Stress–strain relations, uniqueness and variational theorems for elastic–plastic materials with a singular yield-surface. Q. Appl. Math. 11, 350–354 (1953)

    MATH  MathSciNet  Google Scholar 

  40. Ericksen, J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. V, 23–34 (1961)

    Article  MathSciNet  Google Scholar 

  41. Green, E., Rivlin, R.S.: On Cauchy’s equation of motion. Z. Angew. Math Phys. 15, 290–292 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  42. S̆ilhavý, M.: Mass, internal energy, and Cauchy’s equations in frame-indifferent thermodynamics. Arch. Ration. Mech. Anal. 107, 1–22 (1989)

  43. Kanso, E., Arroyo, M., Tong, Y., Yavari, A., Marsden, J.E., Desbrun, M.: On the geometric character of stress in continuum mechanics. Z. Angew. Math. Phys. 58, 1–14 (2007)

    Article  MathSciNet  Google Scholar 

  44. Yavari, A., Marsden, J.E.: Covariant balance laws in continua with microstructure. Rep. Math. Phys. 63, 11–42 (2009)

    Article  MathSciNet  Google Scholar 

  45. Yavari, A.: A geometric theory of growth mechanics. J. Nonlinear Sci. 20, 781–830 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  46. Lehmann, T.: General frame for the definition of constitutive laws for large non-isothermal elastic–plastic and elastic–viscoplastic deformations. In: Lehmann, T. (eds) The Constitutive Law in Thermoplasticity, CISM Courses and Lectures No. 281. Springer, Berlin (1982)

  47. Simo, J.C., Miehe, C.: Associative couple thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput. Methods Appl. Mech. Eng. 98, 41–104 (1992)

    Article  MATH  Google Scholar 

  48. Sansour, C.: On the spatial description in elasticity and the Doyle–Ericksen formula. Comput. Methods Appl. Mech. Eng. 107, 239–249 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  49. Dysson, F.J.: Missed opportunities. Bull. Am. Math. Soc. 78, 635–652 (1972)

    Article  Google Scholar 

  50. Canadija, M., Brnic, J.: Associative couple thermoplasticity at finite strain with temperature dependent material parameters. Int. J. Plast. 20, 1851–1874 (2004)

    Article  Google Scholar 

  51. Hakansson, P., Wallin, W., Ristinmaa, M.: Comparison of isotropic and kinematic hardening in thermoplasticity. Int. J. Plast. 21, 1435–1460 (2005)

    Article  MATH  Google Scholar 

  52. Armero, F., Simo, J.C.: A priori stability estimates and uncoditionably stable product algorithms for nonlinear coupled thermoplasticity. Int. J. Plast. 9, 749–782 (1993)

    Article  MATH  Google Scholar 

  53. Saracibar, A., Cervera, M., Chiumenti, M.: On the formulation of coupled thermoplastic problems with phase change. Int. J. Plast. 15, 1–34 (1999)

    Article  MATH  Google Scholar 

  54. de Saracibar, A., Cervera, M., Chiumenti, M.: On the constitutive modeling of coupled thermomechanical phase—change problems. Int. J. Plast. 17, 1565–1622 (2001)

    Article  MATH  Google Scholar 

  55. Rosakis, P., Rosakis, A.J., Ravichandran, G., Hodowany, J.: A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. J. Mech. Phys. Solids 48, 581–607 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  56. Panoskaltsis, V.P., Polymenakos, L.C., Soldatos, D.: Eulerian structure of generalized plasticity: theoretical and computational aspects. ASCE J. Eng. Mech. 134, 354–361 (2008)

    Article  Google Scholar 

  57. Atluri, S.N.: On constitutive relations at finite strain: hypo-elasticity and elasto-plasticity with isotropic or kinematic hardening. Comput. Methods Appl. Mech. Eng. 43, 137–171 (1984)

    Article  MATH  Google Scholar 

  58. Acharya, A., Shawki, T.G.: The Clausius–Duhem inequality and the structure of rate-independent plasticity. Int. J. Plast. 12, 229–238 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Panoskaltsis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panoskaltsis, V.P., Soldatos, D. & Triantafyllou, S.P. Invariance in non-isothermal generalized plasticity. Acta Mech 226, 931–954 (2015). https://doi.org/10.1007/s00707-013-1003-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-1003-2

Keywords

Navigation