Skip to main content

Advertisement

Log in

Broad-spectrum antiviral properties of andrographolide

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Andrographolide, a diterpenoid, is known for its anti-inflammatory effects. It can be isolated from various plants of the genus Andrographis, commonly known as ‘creat’. This purified compound has been tested for its anti-inflammatory effects in various stressful conditions, such as ischemia, pyrogenesis, arthritis, hepatic or neural toxicity, carcinoma, and oxidative stress, Apart from its anti-inflammatory effects, andrographolide also exhibits immunomodulatory effects by effectively enhancing cytotoxic T cells, natural killer (NK) cells, phagocytosis, and antibody-dependent cell-mediated cytotoxicity (ADCC). All these properties of andrographolide form the foundation for the use of this miraculous compound to restrain virus replication and virus-induced pathogenesis. The present article covers antiviral properties of andrographolide in variety of viral infections, with the hope of developing of a new highly potent antiviral drug with multiple effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

NK cells:

Natural killer cells

Tregs :

Regulatory T cells

CTLs:

Cytotoxic T lymphocytes

IAV:

Influenza A virus

NS:

Non-structural

HBV:

Hepatitis B virus

NC:

Nucleocapsid

DCs:

Dendritic cells

HCV:

Hepatitis C virus

HSV:

Herpes simplex virus

EBV:

Epstein-Barr virus

HPV:

Human papillomavirus

HIV:

Human immunodeficiency virus

AIDS:

Acquired immunodeficiency syndrome

gp:

Glycoprotein

CNS:

Central nervous system

CHIKV:

Chikungunya virus

NCR:

Non-coding region

HBsAg:

Hepatitis B surface antigen

HBeAg:

Hepatitis B envelope antigen

14-DDA:

14-Deoxy-11,12-didehydroandrographolide

DAD:

14-Deoxyandrographolide

IPAD:

3, 19-Isopropylideneandrographolide

ACV:

Acyclovir

HSV-1DR:

HSV-1 drug-resistant strain

CPE:

Cytopathic effect

RIG-1:

Retinoic acid inducible gene 1

RLRs:

RIG-1-like receptors

HO-1:

Haeme oxygenase 1

DASM:

Dehydroandrographolide succinic acid monoester

BAL:

Bronchoalveolar

ADCC:

Antibody-dependent cell-mediated cytotoxicity

References

  1. Liu R, Jacob JR, Tennant B (2003) United States patent, Andrographolide derivatives to treat viral infections, vol 1(12)

  2. Shao Z-J, Zheng X-W, Feng T, Huang J, Chen J, Wu Y-Y et al (2012) Andrographolide exerted its antimicrobial effects by upregulation of human β-defensin-2 induced through p38 MAPK and NF-κB pathway in human lung epithelial cells. Can J Physiol Pharmacol 90(5):647–653

    Article  CAS  PubMed  Google Scholar 

  3. Arifullah M, Namsa ND, Mandal M, Chiruvella KK, Vikrama P, Gopal GR (2013) Evaluation of anti-bacterial and anti-oxidant potential of andrographolide and echiodinin isolated from callus culture of Andrographis paniculata Nees. Asian Pac J Trop Biomed 3(8):604–610

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hua Z, Frohlich KM, Zhang Y, Feng X, Zhang J, Shen L (2015) Andrographolide inhibits intracellular Chlamydia trachomatis multiplication and reduces secretion of proinflammatory mediators produced by human epithelial cells. Pathog Dis 73(1):1–11

    Article  PubMed  Google Scholar 

  5. Roy P, Das S, Bera T, Mondol S, Mukherjee A (2010) Andrographolide nanoparticles in leishmaniasis: characterization and in vitro evaluations. Int J Nanomed 5(1):1113–1121

    CAS  Google Scholar 

  6. Mishra K, Dash AP, Dey N (2011) Andrographolide: a novel antimalarial diterpene lactone compound from Andrographis paniculata and its interaction with curcumin and artesunate. J Trop Med 2011:579518

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zaid OI, Abd Majid R, Sabariah MN, Hasidah MS, Al-Zihiry K, Yam MF et al (2015) Andrographolide effect on both Plasmodium falciparum infected and non infected RBCs membranes. Asian Pac J Trop Med 8(7):507–512

    Article  CAS  PubMed  Google Scholar 

  8. Jayakumar T, Hsieh CY, Lee JJ, Sheu JR (2013) Experimental and clinical pharmacology of Andrographis paniculata and its major bioactive phytoconstituent andrographolide. Evid based ComplemAltern Med 2013

  9. Alagesaboopathi C (2000) Andrographis spp: a source of bitter compounds for medicinal use. Anc Sci Life 19(3 & 4):164–168

    Google Scholar 

  10. Bao Z, Guan S, Cheng C, Wu S, Wong SH, Michael Kemeny D et al (2009) A novel antiinflammatory role for andrographolide in asthma via inhibition of the nuclear factor-κb pathway. Am J Respir Crit Care Med 179(8):657–665

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y-YY, Hsu M-JJ, Hsieh C-YY, Lee L-WW, Chen Z-CC, Sheu J-RR (2013) Andrographolide inhibits nuclear factor-κB activation through JNK-Akt-p65 signaling cascade in tumor necrosis factor-α-stimulated vascular smooth muscle cells. Sci World J 2014:130381

  12. Chao CY, Lii CK, Tsai IT, Li CC, Liu KL, Tsai CW et al (2011) Andrographolide inhibits ICAM-1 expression and NF-κB activation in TNF-α-treated EA.hy926 cells. J Agric Food Chem 59(10):5263–5271

    Article  CAS  PubMed  Google Scholar 

  13. Xia Y-F, Ye B-Q, Li Y-D, Wang J-G, He X-J, Lin X et al (2004) Andrographolide attenuates inflammation by inhibition of NF-kappa B activation through covalent modification of reduced cysteine 62 of p50. J Immunol (Baltimore, Md: 1950) 173(6):4207–4217

  14. Shanmugam M, Singh AK, Nagarethinam B, Sekar K (2012) Pro-apoptotic and anti-inflammatory potential of andrographolide during 7, 12-dimethylbenz [a] anthracene induced hamster buccal pouch carcinogenesis. Integr Med 2(4):313–319

    Google Scholar 

  15. Lin HH, Der Shi M, Tseng HC, Chen JH (2014) Andrographolide sensitizes the cytotoxicity of human colorectal carcinoma cells toward cisplatin via enhancing apoptosis pathways in vitro and in vivo. Toxicol Sci 139(1):108–120

    Article  CAS  PubMed  Google Scholar 

  16. Yunos NM, Mutalip SSM, Jauri MH, Yu JQ, Huq F (2013) Anti-proliferative and pro-apoptotic effects from sequenced combinations of andrographolide and cisplatin on ovarian cancer cell lines. Anticancer Res 33(10):4365–4372

    CAS  PubMed  Google Scholar 

  17. Zhou J, Zhang S, Ong C-N, Shen H-M (2006) Critical role of pro-apoptotic Bcl-2 family members in andrographolide-induced apoptosis in human cancer cells. Biochem Pharmacol 72(2):132–144

    Article  CAS  PubMed  Google Scholar 

  18. Yang S, Evens AM, Prachand S, Singh ATK, Bhalla S, David K et al (2010) Mitochondrial-mediated apoptosis in lymphoma cells by the diterpenoid lactone andrographolide, the active component of Andrographis paniculata. Clin Cancer Res 16(19):4755–4768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li G-F, Qin Y-H, Du P-Q (2015) Andrographolide inhibits the migration, invasion and matrix metalloproteinase expression of rheumatoid arthritis fibroblast-like synoviocytes via inhibition of HIF-1α signaling. Life Sci 136:67–72

    Article  CAS  PubMed  Google Scholar 

  20. Pratheeshkumar P, Kuttan G (2011) Andrographolide inhibits human umbilical vein endothelial cell invasion and migration by regulating MMP-2 and MMP-9 during angiogenesis. J Environ Pathol Toxicol Oncol 30(1):33–41

    Article  CAS  PubMed  Google Scholar 

  21. Zhai Z, Qu X, Li H, Ouyang Z, Yan W, Liu G et al (2015) Inhibition of MDA-MB-231 breast cancer cell migration and invasion activity by andrographolide via suppression of nuclear factor-κB-dependent matrix metalloproteinase-9 expression. Mol Med Rep 11(2):1139–1145

    CAS  PubMed  Google Scholar 

  22. Shi MD, Lin HH, Chiang TA, Tsai LY, Tsai SM, Lee YC et al (2009) Andrographolide could inhibit human colorectal carcinoma Lovo cells migration and invasion via down-regulation of MMP-7 expression. Chem Biol Interact 180(3):344–352

    Article  CAS  PubMed  Google Scholar 

  23. Lee Y-C, Lin H-H, Hsu C-H, Wang C-J, Chiang T-A, Chen J-H (2010) Inhibitory effects of andrographolide on migration and invasion in human non-small cell lung cancer A549 cells via down-regulation of PI3K/Akt signaling pathway. Eur J Pharmacol 632(1–3):23–32

    Article  CAS  PubMed  Google Scholar 

  24. Sheeja K, Kuttan G (2007) Activation of cytotoxic T lymphocyte responses and attenuation of tumor growth in vivo by Andrographis paniculata extract and andrographolide. Immunopharmacol Immunotoxicol 29(1):81–93

    Article  CAS  PubMed  Google Scholar 

  25. Iruretagoyena MI, Tobar JA, González PA, Sepúlveda SE, Figueroa CA, Burgos RA et al (2005) Andrographolide interferes with T cell activation and reduces experimental autoimmune encephalomyelitis in the mouse. J Pharmacol Exp Therap 312(1):366–372

    Article  CAS  Google Scholar 

  26. Chan SJ, Wong WSF, Wong PTH, Bian JS (2010) Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia. Br J Pharmacol 161(3):668–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Das S, Gautam N, Dey SK, Maiti T, Roy S (2009) Oxidative stress in the brain of nicotine-induced toxicity: protective role of Andrographis paniculata Nees and vitamin E. Appl Physiol Nutr Metab (Physiol Appl Nutr Metab) 34(2):124–135

    Article  CAS  Google Scholar 

  28. Chen H-W, Huang C-S, Li C-C, Lin A-H, Huang Y-J, Wang T-S et al (2014) Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats. Toxicol Appl Pharmacol 280(1):1–9

    Article  CAS  PubMed  Google Scholar 

  29. Singha PK, Roy S, Dey S (2007) Protective activity of andrographolide and arabinogalactan proteins from Andrographis paniculata Nees against ethanol-induced toxicity in mice. J Ethnopharmacol 111(1):13–21

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z, Shi G, Zhang Z, Zhang R, Zhang X, Lu Y et al (2012) Protective effect of andrographolide against concanavalin A-induced liver injury. Naunyn-Schmiedeberg’s Arch Pharmacol 385(1):69–79

    Article  Google Scholar 

  31. Roy P, Das S, Auddy RG, Mukherjee A (2014) Engineered andrographolide nanosystems for smart recovery in hepatotoxic conditions. Int J Nanomed 9:4723–4735

    Google Scholar 

  32. Xu Y, Chen A, Fry S, Barrow RA, Marshall RL, Mukkur TKS (2007) Modulation of immune response in mice immunised with an inactivated Salmonella vaccine and gavaged with Andrographis paniculata extract or andrographolide. Int Immunopharmacol 7(4):515–523

    Article  CAS  PubMed  Google Scholar 

  33. Naik SR, Hule A (2009) Evaluation of immunomodulatory activity of an extract of andrographolides from Andographis paniculata. Planta Med 75(8):785–791

    Article  CAS  PubMed  Google Scholar 

  34. Carretta MD, Alarcón P, Jara E, Solis L, Hancke JL, Concha II et al (2009) Andrographolide reduces IL-2 production in T-cells by interfering with NFAT and MAPK activation. Eur J Pharmacol 602(2–3):413–421

    Article  CAS  PubMed  Google Scholar 

  35. Sheeja K, Kuttan G (2007) Modulation of natural killer cell activity, antibody-dependent cellular cytotoxicity, and antibody-dependent complement-mediated cytotoxicity by andrographolide in normal and Ehrlich ascites carcinoma-bearing mice. Integr Cancer Ther 6(1):66–73

    Article  CAS  PubMed  Google Scholar 

  36. Peng G, Zhou F, Ding R, Li H, Yao K (2002) Modulation of lianbizi injection (andrographolide) on some immune functions. Zhongguo zhongyao zazhi (China J Chin Mater Med) 27(2):147–150

    CAS  Google Scholar 

  37. Lindsley WG, Noti JD, Blachere FM, Thewlis RE, Martin SB, Othumpangat S et al (2015) Viable influenza a virus in airborne particles from human coughs. J Occup Environ Hyg 12(2):107–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goto H, Muramoto Y, Noda T, Kawaoka Y (2013) The genome packaging signal of the influenza A virus genome comprises a genome incorporation signal and a genome bundling signal. J Virol 87(21):11316–11322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nicholson K, Robert G, Webster AJH (eds) (2013) Textbook of influenza. Blackwell Science, New York

  40. Ruangrung K, Suptawiwat O, Maneechotesuwan K et al (2016) Neuraminidase activity and resistance of 2009 pandemic H1N1 influenza virus to antiviral activity in bronchoalveolar fluid. J Virol 90(9):4637–4646. doi:10.1128/JVI.00013-16

  41. Chen J-X, Xue H-J, Ye W-C, Fang B-H, Liu Y-H, Yuan S-H et al (2009) Activity of andrographolide and its derivatives against influenza virus in vivo and in vitro. Biol Pharmaceut Bull 32(August):1385–1391

    Article  CAS  Google Scholar 

  42. Raja K, Prabahar A, Selvakumar S, Raja TK (2014) In silico analysis to compare the effectiveness of assorted drugs prescribed for swine flu in diverse medicine systems. Indian J Pharmaceut Sci 76(1):10–18

    Google Scholar 

  43. Lässig C, Hopfner KP (2016) RIG-I-like receptors: one STrEP forward. Trends Microbiol 24(7):517–519. doi:10.1016/j.tim.2016.05.001 (Epub 2016 May 25)

    Article  PubMed  Google Scholar 

  44. Yu B, Dai C, Jiang Z, Li E, Chen C, Wu X et al (2014) Andrographolide as an anti-H1N1 drug and the mechanism related to retinoic acid-inducible gene-I-like receptors signaling pathway. Chin J Integr Med 20(7):540–545

    Article  CAS  PubMed  Google Scholar 

  45. Yuan L, Zhang C, Sun H, Liu Q, Huang J, Sheng L et al (2016) The semi-synthesis of novel andrographolide analogues and anti-influenza virus activity evaluation of their derivatives. Bioorgan Med Chem Lett 26(3):769–773

    Article  CAS  Google Scholar 

  46. Cáceres DD, Hancke JL, Burgos RA, Sandberg F, Wikman GK (1999) Use of visual analogue scale measurements (VAS) to asses the effectiveness of standardized Andrographis paniculata extract SHA-10 in reducing the symptoms of common cold. A randomized double blind-placebo study. Phytomedicine 6(4):217–223

    Article  PubMed  Google Scholar 

  47. Hong M, Sandalova E, Low D et al (2015) Trained immunity in newborn infants of HBV-infected mothers. Nat Commun 25(6):6588. doi:10.1038/ncomms7588

    Article  Google Scholar 

  48. Gitlin N (1997) Hepatitis B: diagnosis, prevention, and treatment. Clin Chem 43(8 Pt 2):1500–1506

    CAS  PubMed  Google Scholar 

  49. Sa-Nguanmoo P, Rianthavorn P, Amornsawadwattana S, Poovorawan Y (2009) Hepatitis B virus infection in non-human primates. Acta Virol 53(2):73–82

    Article  CAS  PubMed  Google Scholar 

  50. Stoop JN, van der Molen RG, Baan C et al (2005) Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology 41:771–778. doi:10.1002/hep.20649

    Article  CAS  PubMed  Google Scholar 

  51. Busca A, Kumar A (2014) Innate immune responses in hepatitis B virus (HBV) infection. Virol J 11(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen Y, Zhu J (2013) Anti-HBV effect of individual traditional Chinese herbal medicine in vitro and in vivo: an analytic review. J Viral Hepat 2013:445–452

  53. Huang Q, Zhang S, Huang R, Wei L, Chen Y, Lv S et al (2013) Isolation and identification of an anti-hepatitis B virus compound from Hydrocotyle sibthorpioides Lam. J Ethnopharmacol 150(2):568–575

    Article  CAS  PubMed  Google Scholar 

  54. Kim KH, Kim ND, Seong BL (2010) Discovery and development of anti-HBV agents and their resistance. Molecules 15(9):5878–5908

    Article  CAS  PubMed  Google Scholar 

  55. Chen H, Ma Y-B, Huang X-Y, Geng C-A, Zhao Y, Wang L-J et al (2014) Synthesis, structure–activity relationships and biological evaluation of dehydroandrographolide and andrographolide derivatives as novel anti-hepatitis B virus agents. Bioorgan Med Chem Lett 24(10):2353–2359

    Article  CAS  Google Scholar 

  56. Ito M, Kusunoki H, Mizuochi T (2011) Peripheral B cells as reservoirs for persistent HCV infection 2:1–3

    Google Scholar 

  57. Yi G, Wen Y, Shu C et al (2015) Hepatitis C virus NS4B can suppress STING accumulation to evade innate immune responses. J Virol 90(1):254–265. doi:10.1128/JVI.01720-15

    Article  PubMed  PubMed Central  Google Scholar 

  58. Freeman AJ, Marinos G, Ffrench RA, Lloyd AR (2001) Immunopathogenesis of hepatitis C virus infection. Immunol Cell Biol 79(6):515–536

    Article  CAS  PubMed  Google Scholar 

  59. Yu Y, Jing JF, Tong XK, He PL, Li YC, Hu YH et al (2014) Discovering novel anti-HCV compounds with inhibitory activities toward HCV NS3/4A protease. Acta Pharmacol Sin 35(8):1074–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee JC, Tseng CK, Young KC, Sun HY, Wang SW, Chen WC et al (2014) Andrographolide exerts anti-hepatitis C virus activity by up-regulating haeme oxygenase-1 via the p38 MAPK/Nrf2 pathway in human hepatoma cells. Br J Pharmacol 171(1):237–252

    Article  CAS  PubMed  Google Scholar 

  61. Chandramohan V, Kaphle A, Chekuri M, Gangarudraiah S, Bychapur Siddaiah G (2015) Evaluating andrographolide as a potent inhibitor of NS3-4A protease and its drug-resistant mutants using in silico approaches. Adv Virol 2015

  62. Farooq AV, Valyi-Nagy T, Shukla D (2010) Mediators and mechanisms of herpes simplex virus entry into ocular cells. Curr Eye Res 35(6):445–450

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chentoufi AA, Dervillez X, Dasgupta G et al (2012) The herpes simplex virus type 1 latency-associated transcript inhibits phenotypic and functional maturation of dendritic cells. Viral Immunol 25(3):204–215. doi:10.1089/vim.2011.0091

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kimberlin DW, Whitley RJ (2007) Antiviral therapy of HSV-1 and HSV-2. In: Arvin A, Campadelli-Fiume G, Mocarski E et al (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis, chap 64. Cambridge University Press, Cambridge

  65. Wiart C, Kumar K, Yusof MY, Hamimah H, Fauzi ZM, Sulaiman M (2005) Antiviral properties of ent-labdene diterpenes of Andrographis paniculata Nees, inhibitors of herpes simplex virus type 1. Phytother Res 19(August):1069–1070

    Article  CAS  PubMed  Google Scholar 

  66. Seubsasana S, Pientong C, Ekalaksananan T, Thongchai S, Aromdee C (2011) A potential andrographolide analogue against the replication of herpes simplex virus type 1 in vero cells. Med Chem 7(3):237–244

    Article  CAS  PubMed  Google Scholar 

  67. Aromdee C, Suebsasana S, Ekalaksananan T, Pientong C, Thongchai S (2011) Stage of action of naturally occurring andrographolides and their semisynthetic analogues against herpes simplex virus type 1 in vitro. Planta Med 77(9):915–921

    Article  CAS  PubMed  Google Scholar 

  68. Priengprom T, Ekalaksananan T, Kongyingyoes B, Suebsasana S, Aromdee C, Pientong C (2015) Synergistic effects of acyclovir and 3, 19-isopropylideneandrographolide on herpes simplex virus wild types and drug-resistant strains. BMC Complement Altern Med 15(1):56

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tugizov SM, Berline JW, Palefsky JM (2003) Epstein–Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat Med 9(3):307–314

    Article  CAS  PubMed  Google Scholar 

  70. Ni C, Chen Y, Zeng M, Pei R, Du Y, Tang L et al (2015) In-cell infection: a novel pathway for Epstein–Barr virus infection mediated by cell-in-cell structures. Cell Res 25(7):785–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rancan C, Schirrmann L, Hüls C, Zeidler R, Moosmann A (2015) Latent membrane protein LMP2A impairs recognition of EBV-infected cells by CD8+ T cells. PLoS Pathog 11(6):e1004906. doi:10.1371/journal.ppat.1004906

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang JJ, Li YF, Jin YY, Wang X, Chen TX (2012) Effects of Epstein–Barr virus on the development of dendritic cells derived from cord blood monocytes: an essential role for apoptosis. Braz J Infect Dis 16(1):19–26

  73. Lin T-P, Chen S-Y, Duh P-D, Chang L-K, Liu Y-N (2008) Inhibition of the Epstein–Barr virus lytic cycle by andrographolide. Biol Pharmaceut Bull 31(11):2018–2023

    Article  CAS  Google Scholar 

  74. Song D, Li H, Li H, Dai J (2015) Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer. Oncol Lett 10(2):600–606 (Epub 2015 May 29)

    PubMed  PubMed Central  Google Scholar 

  75. Lee HJ, Yoon JK, Heo Y, Cho H, Cho Y, Gwon Y, Kim KC, Choi J, Lee JS, Oh YK, Kim YB (2015) Therapeutic potential of an AcHERV-HPV L1 DNA vaccine. J Microbiol 53(6):415–420. doi:10.1007/s12275-015-5150-0

    Article  CAS  PubMed  Google Scholar 

  76. Ekalaksananan T, Sookmai W, Fangkham S, Pientong C, Aromdee C, Seubsasana S et al (2015) Activity of andrographolide and its derivatives on HPV16 pseudovirus infection and viral oncogene expression in cervical carcinoma cells. Nutr Cancer 67(4):687–696

    Article  CAS  PubMed  Google Scholar 

  77. Masur H (2015) HIV-related opportunistic infections are still relevant in 2015. Top Antivir Med 23(3):116–119

  78. Chang RS, Ding L, Chen GQ, Pan QC, Zhao ZL, Smith KM (1991) Dehydroandrographolide succinic acid monoester as an inhibitor against the human immunodeficiency virus. Proc Soc Exp Biol Med 197(1):59–66

    Article  CAS  PubMed  Google Scholar 

  79. Calabrese C, Berman SH, Babish JG, Ma X, Shinto L, Dorr M et al (2000) A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res PTR 14(5):333–338

    Article  CAS  PubMed  Google Scholar 

  80. Reddy VLN, Reddy SM, Ravikanth V (2014) Natural product research : formerly natural product letters a new BIS-andrographolide ether from Andrographis paniculata Nees and evaluation of anti-HIV activity. J Asian Nat Prod Res 2006:37–41

    Google Scholar 

  81. van Duijl-Richter M, Hoornweg T, Rodenhuis-Zybert I, Smit J (2015) Early events in chikungunya virus infection—from virus cell binding to membrane fusion. Viruses 7(7):3647–3674

    Article  PubMed  PubMed Central  Google Scholar 

  82. Thon-Hon VG, Denizot M, Li-Pat-Yuen G, Giry C, Jaffar-Bandjee M-C, Gasque P (2012) Deciphering the differential response of two human fibroblast cell lines following chikungunya virus infection. Virol J 9(1):213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wintachai P, Kaur P, Lee RCH, Ramphan S, Kuadkitkan A, Wikan N et al (2015) Activity of andrographolide against chikungunya virus infection. Sci Rep Nat Publish Group 5:14179

    CAS  Google Scholar 

  84. Keyaerts E, Vijgen L, Pannecouque C, Van Damme E, Peumans W, Egberink H et al (2007) Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 75(3):179–187

    Article  CAS  PubMed  Google Scholar 

  85. Singh S, Shenoy S, Nehete PN, Yang P, Nehete B, Fontenot D et al (2013) Nerium oleander derived cardiac glycoside oleandrin is a novel inhibitor of HIV infectivity. Fitoterapia 84(1):32–39

    Article  CAS  PubMed  Google Scholar 

  86. Park IW, Han C, Song X, Green LA, Wang T, Liu Y et al (2009) Inhibition of HIV-1 entry by extracts derived from traditional Chinese medicinal herbal plants. BMC Complement Altern Med. 9:29

    Article  PubMed  PubMed Central  Google Scholar 

  87. Xue J, Gao Y, Hoorelbeke B, Kagiampakis I, Zhao B, Demeler B et al (2012) The role of individual carbohydrate-binding sites in the function of the potent anti-HIV lectin griffithsin. Mol Pharmaceut 9(9):2613–2625

    Article  CAS  Google Scholar 

  88. Chang Y-S, Woo E-R (2003) Korean medicinal plants inhibiting to human immunodeficiency virus type 1 (HIV-1) fusion. Phytother Res PTR 17(4):426–429

    Article  PubMed  Google Scholar 

  89. Talarico LB, Damonte EB (2007) Interference in dengue virus adsorption and uncoating by carrageenans. Virology 363(2):473–485

    Article  CAS  PubMed  Google Scholar 

  90. Bankova V, Galabov AS, Antonova D, Vilhelmova N, Di Perri B (2014) Chemical composition of Propolis Extract ACF® and activity against herpes simplex virus. Phytomedicine 21(11):1432–1438

    Article  CAS  PubMed  Google Scholar 

  91. Zandi K, Teoh B-T, Sam S-S, Wong P-F, Mustafa MR, Abubakar S (2012) Novel antiviral activity of baicalein against dengue virus. BMC Complement Altern Med 12(1):214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Haid S, Novodomsk A, Gentzsch J, Grethe C, Geuenich S, Bankwitz D et al (2012) A plant-derived flavonoid inhibits entry of All HCV genotypes into human hepatocytes. Gastroenterology 143(1)

  93. Blaising J, Lvy PL, Gondeau C, Phelip C, Varbanov M, Teissier E et al (2013) Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking. Cell Microbiol 15(11):1866–1882

    CAS  PubMed  Google Scholar 

  94. Kim Y, Narayanan S, Chang KO (2010) Inhibition of influenza virus replication by plant-derived isoquercetin. Antiviral Res 88(2):227–235

    Article  CAS  PubMed  Google Scholar 

  95. Wang YJ, Pan KL, Hsieh TC, Chang TY, Lin WH, Hsu JTA (2011) Diosgenin, a plant-derived sapogenin, exhibits antiviral activity in vitro against hepatitis C virus. J Nat Prod 74(4):580–584

    Article  CAS  PubMed  Google Scholar 

  96. Zhang X, Huang SZ, Gu WG, Yang LM, Chen H, Zheng CB et al (2014) Wikstroelide M potently inhibits HIV replication by targeting reverse transcriptase and integrase nuclear translocation. Chin J Nat Med 12(3):186–193

    CAS  PubMed  Google Scholar 

  97. Rimando AM, Pezzuto JM, Farnsworth NR, Santisuk T, Reutrakul V, Kawanishi K (1994) New lignans from Anogeissus acuminata with HIV-1 reverse transcriptase inhibitory activity. J Nat Prod 57(7):896–904

    Article  CAS  PubMed  Google Scholar 

  98. Rowley DC, Hansen MST, Rhodes D, Sotriffer CA, Ni H, McCammon JA et al (2002) Thalassiolins A–C: new marine-derived inhibitors of HIV cDNA integrase. Bioorgan Med Chem 10(11):3619–3625

    Article  CAS  Google Scholar 

  99. Mansouri S, Choudhary G, Sarzala PM, Ratner L, Hudak K (2009) Suppression of human T-cell leukemia virus I gene expression by pokeweed antiviral protein. J Biol Chem 284(45):31453–31462

  100. Wan Z, Lu Y, Liao Q, Wu Y, Chen X (2012) Fangchinoline inhibits human immunodeficiency virus type 1 replication by interfering with gp160 proteolytic processing. PLoS One 7(6)

  101. Narayan V, Ravindra KC, Chiaro C, Cary D, Aggarwal BB, Henderson AJ et al (2011) Celastrol inhibits tat-mediated human immunodeficiency virus (HIV) transcription and replication. J Mol Biol 410(5):972–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nithya P, Jeyaram C, Sundaram KM, Chandrasekar A, Ramasamy MS (2014) Anti-dengue viral compounds from Andrographis paniculata by insilico approach indian system of medicine / natural product. Laboratory 1(2):10–16

    Google Scholar 

  103. Pongtuluran OB, Rofaani E (2015) Antiviral and immunostimulant activities of Andrographis paniculata. HAYATI J Biosci 22(2)

  104. Edwin ES, Srinivasan V, Senthil-Nathan S, Thanigaivel PA, Ponsankar A, Pradeepa V, Selin-Rani S, Kalaivani K, Hunter WB, Abdel-Megeed A, Duraipandiyan V, Al-Dhabi NA (2016) Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop

  105. Diwaker D, Mishra KP, Ganju L, Singh SB (2014) Rhodiola inhibits dengue virus multiplication by inducing innate immune response genes RIG-I, MDA5 and ISG in human monocytes. Arch Virol 159(8):1975–1986

    Article  CAS  PubMed  Google Scholar 

  106. Mishra KP, Sharma N, Diwaker D, Ganju L, Singh SB (2016) Plant derived antivirals: a potential source of drug development. J Virol Antiviral Res 2(2)

  107. Diwaker D, Mishra KP, Ganju L (2015) Effect of modulation of unfolded protein response pathway on dengue virus infection. Acta Biochim Biophys Sin (Shanghai) 47(12):960–968

    Google Scholar 

  108. Lazar C, Uta M, Branza-Nichita N (2014) Modulation of the unfolded protein response by the human hepatitis B virus. Front Microbiol 19(5):433

    Google Scholar 

  109. Kavaliauskis A, Arnemo M, Rishovd AL, Gjøen T (2016) Activation of unfolded protein response pathway during infectious salmon anemia virus (ISAV) infection in vitro an in vivo. Dev Comp Immunol 54(1):46–54

    Article  CAS  PubMed  Google Scholar 

  110. Medigeshi GR, Lancaster AM, Hirsch AJ, Briese T, Lipkin WI, Defilippis V, Früh K, Mason PW, Nikolich-Zugich J, Nelson JA (2007) West Nile virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis. J Virol 81(20):10849–10860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rathore AP, Ng ML, Vasudevan SG (2013) Differential unfolded protein response during Chikungunya and Sindbis virus infection: CHIKV nsP4 suppresses eIF2α phosphorylation. Virol J 28(10):36

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Council of Scientific and Industrial Research (CSIR) in the form of a research fellowship granted to SG and the Defence Research and Development Organisation (DRDO) in the form of a project grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Mishra.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Mishra, K.P. & Ganju, L. Broad-spectrum antiviral properties of andrographolide. Arch Virol 162, 611–623 (2017). https://doi.org/10.1007/s00705-016-3166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3166-3

Keywords

Navigation